Gallegos Ayala Guillermo I, Haslacher David, Krol Laurens R, Soekadar Surjo R, Zander Thorsten O
Department of Psychiatry and Neurosciences, Clinical Neurotechnology Laboratory, Charité - Universitätsmedizin Berlin, Berlin, Germany.
Neuroadaptive Human-Computer Interaction, Brandenburg University of Technology Cottbus-Senftenberg, Cottbus, Brandenburg, Germany.
Front Neuroergon. 2023 Nov 23;4:1233722. doi: 10.3389/fnrgo.2023.1233722. eCollection 2023.
Brain-computer interfaces (BCI) can provide real-time and continuous assessments of mental workload in different scenarios, which can subsequently be used to optimize human-computer interaction. However, assessment of mental workload is complicated by the task-dependent nature of the underlying neural signals. Thus, classifiers trained on data from one task do not generalize well to other tasks. Previous attempts at classifying mental workload across different cognitive tasks have therefore only been partially successful. Here we introduce a novel algorithm to extract frontal theta oscillations from electroencephalographic (EEG) recordings of brain activity and show that it can be used to detect mental workload across different cognitive tasks. We use a published data set that investigated subject dependent task transfer, based on Filter Bank Common Spatial Patterns. After testing, our approach enables a binary classification of mental workload with performances of 92.00 and 92.35%, respectively for either low or high workload vs. an initial no workload condition, with significantly better results than those of the previous approach. It, nevertheless, does not perform beyond chance level when comparing high vs. low workload conditions. Also, when an independent component analysis was done first with the data (and before any additional preprocessing procedure), even though we achieved more stable classification results above chance level across all tasks, it did not perform better than the previous approach. These mixed results illustrate that while the proposed algorithm cannot replace previous general-purpose classification methods, it may outperform state-of-the-art algorithms in specific (workload) comparisons.
脑机接口(BCI)可以在不同场景下提供对心理负荷的实时和连续评估,随后可用于优化人机交互。然而,心理负荷的评估因潜在神经信号的任务依赖性而变得复杂。因此,在一个任务的数据上训练的分类器对其他任务的泛化能力不佳。以往在跨不同认知任务对心理负荷进行分类的尝试因此仅取得了部分成功。在此,我们引入一种新颖的算法,从大脑活动的脑电图(EEG)记录中提取额叶θ振荡,并表明它可用于检测跨不同认知任务的心理负荷。我们使用一个已发表的数据集,该数据集基于滤波器组公共空间模式研究了受试者依赖的任务转移。经过测试,我们的方法能够对心理负荷进行二元分类,对于低负荷或高负荷与初始无负荷状态相比,分类准确率分别为92.00%和92.35%,结果明显优于先前的方法。然而,在比较高负荷与低负荷状态时,其表现并未超过随机水平。此外,当首先对数据进行独立成分分析(且在任何额外的预处理程序之前)时,尽管我们在所有任务中都获得了高于随机水平的更稳定分类结果,但它的表现并不比先前的方法更好。这些混合结果表明,虽然所提出的算法不能取代先前的通用分类方法,但在特定(负荷)比较中它可能优于当前的先进算法。