Suppr超能文献

利用多重成像和图卷积网络解码肿瘤微环境中的mTOR信号异质性。

Decoding mTOR signalling heterogeneity in the tumour microenvironment using multiplexed imaging and graph convolutional networks.

作者信息

Zuhair Razan, Eastwood Mark, Jones Megan, Cross Amy, Hester Joanna, Issa Fadi, Ginty Fiona, Sailem Heba

出版信息

bioRxiv. 2023 Dec 30:2023.12.30.573693. doi: 10.1101/2023.12.30.573693.

Abstract

Evaluating the contribution of the tumour microenvironment (TME) in tumour progression has proven a complex challenge due to the intricate interactions within the TME. Multiplexed imaging is an emerging technology that allows concurrent assessment of multiple of these components simultaneously. Here we utilise a highly multiplexed dataset of 61 markers across 746 colorectal tumours to investigate how complex mTOR signalling in different tissue compartments influences patient prognosis. We found that the signalling of mTOR pathway can have heterogeneous activation patterns in tumour and immune compartments which correlate with patient prognosis. Using graph neural networks, we determined the most predictive features of mTOR activity in immune cells and identified relevant cellular subpopulations. We validated our observations using spatial transcriptomics data analysis in an independent patient cohort. Our work provides a framework for studying complex cell signalling and reveals important insights for developing mTOR-based therapies.

摘要

由于肿瘤微环境(TME)内存在复杂的相互作用,评估其在肿瘤进展中的作用已被证明是一项复杂的挑战。多重成像技术是一种新兴技术,它能够同时对多个这些成分进行评估。在这里,我们利用一个包含746个结直肠癌肿瘤中61个标志物的高度多重数据集,来研究不同组织区域中复杂的mTOR信号通路如何影响患者预后。我们发现,mTOR通路的信号传导在肿瘤和免疫区域可能具有异质性激活模式,这与患者预后相关。利用图神经网络,我们确定了免疫细胞中mTOR活性的最具预测性的特征,并识别出相关的细胞亚群。我们在一个独立的患者队列中使用空间转录组数据分析验证了我们的观察结果。我们的工作为研究复杂的细胞信号传导提供了一个框架,并为开发基于mTOR的疗法揭示了重要的见解。

相似文献

2
Delineating spatial cell-cell interactions in the solid tumour microenvironment through the lens of highly multiplexed imaging.
Front Immunol. 2023 Oct 23;14:1275890. doi: 10.3389/fimmu.2023.1275890. eCollection 2023.
4
Graph deep learning for the characterization of tumour microenvironments from spatial protein profiles in tissue specimens.
Nat Biomed Eng. 2022 Dec;6(12):1435-1448. doi: 10.1038/s41551-022-00951-w. Epub 2022 Nov 10.
5
Inference on spatial heterogeneity in tumor microenvironment using spatial transcriptomics data.
Comput Syst Oncol. 2022 Sep;2(3). doi: 10.1002/cso2.1043. Epub 2022 Aug 11.
6
A Graph Based Neural Network Approach to Immune Profiling of Multiplexed Tissue Samples.
Annu Int Conf IEEE Eng Med Biol Soc. 2022 Jul;2022:3063-3067. doi: 10.1109/EMBC48229.2022.9871251.
8
Identification of a tumour immune barrier in the HCC microenvironment that determines the efficacy of immunotherapy.
J Hepatol. 2023 Apr;78(4):770-782. doi: 10.1016/j.jhep.2023.01.011. Epub 2023 Jan 26.
9
Multimodal Molecular Imaging of the Tumour Microenvironment.
Adv Exp Med Biol. 2020;1225:71-87. doi: 10.1007/978-3-030-35727-6_5.
10
Cell clustering for spatial transcriptomics data with graph neural networks.
Nat Comput Sci. 2022 Jun;2(6):399-408. doi: 10.1038/s43588-022-00266-5. Epub 2022 Jun 27.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验