Suppr超能文献

基于组织标本空间蛋白质图谱的肿瘤微环境特征的图深度学习。

Graph deep learning for the characterization of tumour microenvironments from spatial protein profiles in tissue specimens.

机构信息

Enable Medicine, Menlo Park, CA, USA.

Department of Chemistry, Stanford University, Stanford, CA, USA.

出版信息

Nat Biomed Eng. 2022 Dec;6(12):1435-1448. doi: 10.1038/s41551-022-00951-w. Epub 2022 Nov 10.

Abstract

Multiplexed immunofluorescence imaging allows the multidimensional molecular profiling of cellular environments at subcellular resolution. However, identifying and characterizing disease-relevant microenvironments from these rich datasets is challenging. Here we show that a graph neural network that leverages spatial protein profiles in tissue specimens to model tumour microenvironments as local subgraphs captures distinctive cellular interactions associated with differential clinical outcomes. We applied this spatial cellular-graph strategy to specimens of human head-and-neck and colorectal cancers assayed with 40-plex immunofluorescence imaging to identify spatial motifs associated with cancer recurrence and with patient survival after treatment. The graph deep learning model was substantially more accurate in predicting patient outcomes than deep learning approaches that model spatial data on the basis of the local composition of cell types, and it generated insights into the effect of the spatial compartmentalization of tumour cells and granulocytes on patient prognosis. Local graphs may also aid in the analysis of disease-relevant motifs in histology samples characterized via spatial transcriptomics and other -omics techniques.

摘要

多重免疫荧光成像允许在亚细胞分辨率下对细胞环境进行多维分子分析。然而,从这些丰富的数据集识别和表征与疾病相关的微环境具有挑战性。在这里,我们展示了一种图神经网络,该网络利用组织标本中的空间蛋白谱将肿瘤微环境建模为局部子图,从而捕获与不同临床结果相关的独特细胞相互作用。我们将这种空间细胞图策略应用于经过 40 重免疫荧光成像检测的人类头颈部和结直肠癌标本,以鉴定与癌症复发和治疗后患者生存相关的空间模式。与基于细胞类型局部组成对空间数据建模的深度学习方法相比,图深度学习模型在预测患者预后方面更为准确,它还深入了解了肿瘤细胞和粒细胞的空间区室化对患者预后的影响。局部图也可能有助于通过空间转录组学和其他组学技术对组织学样本中与疾病相关的模式进行分析。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验