Li Jiachen, Chen Siheng, Pan Xiaoyong, Yuan Ye, Shen Hong-Bin
Institute of Image Processing and Pattern Recognition, Shanghai Jiao Tong University, Shanghai, China.
Key Laboratory of System Control and Information Processing, Ministry of Education of China, Shanghai, China.
Nat Comput Sci. 2022 Jun;2(6):399-408. doi: 10.1038/s43588-022-00266-5. Epub 2022 Jun 27.
Spatial transcriptomics data can provide high-throughput gene expression profiling and the spatial structure of tissues simultaneously. Most studies have relied on only the gene expression information but cannot utilize the spatial information efficiently. Taking advantage of spatial transcriptomics and graph neural networks, we introduce cell clustering for spatial transcriptomics data with graph neural networks, an unsupervised cell clustering method based on graph convolutional networks to improve ab initio cell clustering and discovery of cell subtypes based on curated cell category annotation. On the basis of its application to five in vitro and in vivo spatial datasets, we show that cell clustering for spatial transcriptomics outperforms other spatial clustering approaches on spatial transcriptomics datasets and can clearly identify all four cell cycle phases from multiplexed error-robust fluorescence in situ hybridization data of cultured cells. From enhanced sequential fluorescence in situ hybridization data of brain, cell clustering for spatial transcriptomics finds functional cell subtypes with different micro-environments, which are all validated experimentally, inspiring biological hypotheses about the underlying interactions among the cell state, cell type and micro-environment.
空间转录组学数据能够同时提供高通量基因表达谱和组织的空间结构信息。大多数研究仅依赖于基因表达信息,却无法有效地利用空间信息。利用空间转录组学和图神经网络,我们引入了基于图神经网络的空间转录组学数据细胞聚类方法,这是一种基于图卷积网络的无监督细胞聚类方法,用于改进从头细胞聚类,并基于精心策划的细胞类别注释发现细胞亚型。基于其在五个体外和体内空间数据集上的应用,我们表明,空间转录组学的细胞聚类在空间转录组学数据集上优于其他空间聚类方法,并且能够从培养细胞的多重抗误差荧光原位杂交数据中清晰地识别出所有四个细胞周期阶段。从大脑的增强型序列荧光原位杂交数据中,空间转录组学的细胞聚类发现了具有不同微环境的功能性细胞亚型,这些均通过实验得到验证,从而激发了关于细胞状态、细胞类型和微环境之间潜在相互作用的生物学假设。