Digital Medicine and Translational Imaging, Pfizer Inc, Cambridge, MA, United States.
JMIR Mhealth Uhealth. 2022 Apr 21;10(4):e36762. doi: 10.2196/36762.
Wearable inertial sensors are providing enhanced insight into patient mobility and health. Significant research efforts have focused on wearable algorithm design and deployment in both research and clinical settings; however, open-source, general-purpose software tools for processing various activities of daily living are relatively scarce. Furthermore, few studies include code for replication or off-the-shelf software packages. In this work, we introduce SciKit Digital Health (SKDH), a Python software package (Python Software Foundation) containing various algorithms for deriving clinical features of gait, sit to stand, physical activity, and sleep, wrapped in an easily extensible framework. SKDH combines data ingestion, preprocessing, and data analysis methods geared toward modern data science workflows and streamlines the generation of digital endpoints in "good practice" environments by combining all the necessary data processing steps in a single pipeline. Our package simplifies the construction of new data processing pipelines and promotes reproducibility by following a convention over configuration approach, standardizing most settings on physiologically reasonable defaults in healthy adult populations or those with mild impairment. SKDH is open source, as well as free to use and extend under a permissive Massachusetts Institute of Technology license, and is available from GitHub (PfizerRD/scikit-digital-health), the Python Package Index, and the conda-forge channel of Anaconda.
可穿戴惯性传感器为患者的移动和健康状况提供了更深入的了解。大量的研究工作集中在可穿戴算法的设计和研究以及临床环境中的部署上;然而,用于处理各种日常生活活动的开源、通用软件工具相对较少。此外,很少有研究包括可复制的代码或现成的软件包。在这项工作中,我们引入了 SciKit Digital Health (SKDH),这是一个 Python 软件包(Python 软件基金会),其中包含用于推导步态、从坐到站、身体活动和睡眠的临床特征的各种算法,封装在一个易于扩展的框架中。SKDH 结合了数据摄取、预处理和数据分析方法,适用于现代数据科学工作流程,并通过将所有必要的数据处理步骤组合在单个管道中,简化了数字端点的生成。我们的软件包通过遵循约定优于配置的方法简化了新的数据处理管道的构建,并通过标准化大多数设置为健康成年人或轻度损伤人群中的生理合理默认值来促进可重复性。SKDH 是开源的,并且可以根据麻省理工学院的许可免费使用和扩展,可从 GitHub(PfizerRD/scikit-digital-health)、Python 包索引和 Anaconda 的 conda-forge 频道获得。