Suppr超能文献

线粒体呼吸缺陷型酿酒酵母生物量生产中能量成本升高。

Elevated energy costs of biomass production in mitochondrial respiration-deficient Saccharomyces cerevisia.

机构信息

Systems Biology Lab, A-Life/AIMMS, Vrije Universiteit Amsterdam, De Boelelaan 1085, 1081HV Amsterdam, the Netherlands.

出版信息

FEMS Yeast Res. 2023 Jan 4;23. doi: 10.1093/femsyr/foad008.

Abstract

Microbial growth requires energy for maintaining the existing cells and producing components for the new ones. Microbes therefore invest a considerable amount of their resources into proteins needed for energy harvesting. Growth in different environments is associated with different energy demands for growth of yeast Saccharomyces cerevisiae, although the cross-condition differences remain poorly characterized. Furthermore, a direct comparison of the energy costs for the biosynthesis of the new biomass across conditions is not feasible experimentally; computational models, on the contrary, allow comparing the optimal metabolic strategies and quantify the respective costs of energy and nutrients. Thus in this study, we used a resource allocation model of S. cerevisiae to compare the optimal metabolic strategies between different conditions. We found that S. cerevisiae with respiratory-impaired mitochondria required additional energetic investments for growth, while growth on amino acid-rich media was not affected. Amino acid supplementation in anaerobic conditions also was predicted to rescue the growth reduction in mitochondrial respiratory shuttle-deficient mutants of S. cerevisiae. Collectively, these results point to elevated costs of resolving the redox imbalance caused by de novo biosynthesis of amino acids in mitochondria. To sum up, our study provides an example of how resource allocation modeling can be used to address and suggest explanations to open questions in microbial physiology.

摘要

微生物的生长需要能量来维持现有细胞,并为新细胞生产组成部分。因此,微生物将大量资源投入到用于能量获取的蛋白质中。尽管不同条件下的交叉差异特征描述仍不完整,但不同环境中的生长与酿酒酵母(Saccharomyces cerevisiae)的生长能量需求不同有关。此外,从实验上直接比较不同条件下新生物量生物合成的能量成本是不可行的;相反,计算模型允许比较最佳代谢策略,并量化能量和营养物质的相应成本。因此,在这项研究中,我们使用酿酒酵母的资源分配模型来比较不同条件下的最佳代谢策略。我们发现,呼吸功能受损的线粒体酿酒酵母需要额外的能量投入来生长,而在富含氨基酸的培养基上的生长不受影响。在厌氧条件下补充氨基酸也被预测可以挽救线粒体呼吸穿梭缺陷突变体酿酒酵母的生长减少。总之,这些结果表明,新合成的氨基酸在线粒体中引起的氧化还原失衡需要更高的成本来解决。总之,我们的研究提供了一个例子,说明资源分配模型如何用于解决和提出微生物生理学中悬而未决问题的解释。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6eaf/9949590/18dad348644c/foad008fig1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验