Asakuma Norifumi, Tada Shotaro, Tamura Tomoyuki, Kawaguchi Erika, Honda Sawao, Asaka Toru, Bouzid Assil, Bernard Samuel, Iwamoto Yuji
Department of Life Science and Applied Chemistry, Graduate School of Engineering, Nagoya Institute of Technology, Nagoya, Japan.
Department of Metallurgical and Materials Engineering, Indian Institute of Technology Madras, Chennai, India.
Dalton Trans. 2024 Mar 19;53(12):5686-5694. doi: 10.1039/d3dt04155g.
Herein, nanocomposites made of Ni nanoparticles distributed in an amorphous silicon nitride (Ni/a-SiN) matrix, on the one hand, and within an amorphous silicon dioxide (Ni/a-SiO) matrix, on the other hand, were synthesized from the same Ni-modified polysilazane precursor. In both compounds, the Ni/Si atomic ratio (0.06-0.07), average Ni nanocrystallite size (7.0-7.6 nm) and micro/mesoporosity of the matrix were rigorously fixed. Hydrogen (H)-temperature-programmed desorption (TPD) profile analysis revealed that the activation energy for H desorption at about 100-130 °C evaluated for the Ni/a-SiN sample (47.4 kJ mol) was lower than that for the Ni/a-SiO sample (68.0 kJ mol). Mechanistic study with X-ray photoelectron spectroscopy (XPS) analysis and density functional theory (DFT) calculations revealed that, at Ni nanoparticle/matrix heterointerfaces, Ni becomes more covalently bonded to N atoms in the a-SiN matrix compared to O atoms in the a-SiO matrix. Therefore, based on experimental and theoretical studies, we elucidated that nickel-nitrogen (Ni-N) interactions at the heterointerface lead to remarkable Ni d band broadening and downshifting of the d band center relative to those generated by Ni-oxygen (Ni-O) interactions at the heterointerface. This facilitates H desorption, as experimentally observed in the Ni/a-SiN sample.
在此,一方面由分布在非晶态氮化硅(Ni/a-SiN)基质中的镍纳米颗粒制成的纳米复合材料,另一方面由分布在非晶态二氧化硅(Ni/a-SiO)基质中的镍纳米颗粒制成的纳米复合材料,是由相同的镍改性聚硅氮烷前驱体制备而成。在这两种化合物中,镍/硅原子比(0.06 - 0.07)、镍纳米微晶的平均尺寸(7.0 - 7.6 nm)以及基质的微孔/介孔率都被严格固定。氢(H)程序升温脱附(TPD)谱分析表明,对于Ni/a-SiN样品,在约100 - 130°C下评估的氢脱附活化能(47.4 kJ/mol)低于Ni/a-SiO样品(68.0 kJ/mol)。通过X射线光电子能谱(XPS)分析和密度泛函理论(DFT)计算进行的机理研究表明,在镍纳米颗粒/基质异质界面处,与a-SiO基质中的氧原子相比,镍与a-SiN基质中的氮原子形成更强的共价键。因此,基于实验和理论研究,我们阐明了异质界面处的镍 - 氮(Ni - N)相互作用导致了显著的镍d带展宽以及相对于异质界面处镍 - 氧(Ni - O)相互作用所产生的d带中心下移。这促进了氢脱附,正如在Ni/a-SiN样品中实验观察到的那样。