Research and Utilization Division, Japan Synchrotron Radiation Research Institute/SPring-8, 1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo 679-5198, Japan.
Proc Natl Acad Sci U S A. 2011 Sep 6;108(36):14780-5. doi: 10.1073/pnas.1104692108. Epub 2011 Aug 22.
The atomic structures of magnesium silicate melts are key to understanding processes related to the evolution of the Earth's mantle and represent precursors to the formation of most igneous rocks. Magnesium silicate compositions also represent a major component of many glass ceramics, and depending on their composition can span the entire fragility range of glass formation. The silica rich enstatite (MgSiO(3)) composition is a good glass former, whereas the forsterite (Mg(2)SiO(4)) composition is at the limit of glass formation. Here, the structure of MgSiO(3) and Mg(2)SiO(4) composition glasses obtained from levitated liquids have been modeled using Reverse Monte Carlo fits to diffraction data and by density functional theory. A ring statistics analysis suggests that the lower glass forming ability of the Mg(2)SiO(4) glass is associated with a topologically ordered and very narrow ring distribution. The MgO(x) polyhedra have a variety of irregular shapes in MgSiO(3) and Mg(2)SiO(4) glasses and a cavity analysis demonstrates that both glasses have almost no free volume due to a large contribution from edge sharing of MgO(x)-MgO(x) polyhedra. It is found that while the atomic volume of Mg cations in the glasses increases compared to that of the crystalline phases, the number of Mg-O contacts is reduced, although the effective chemical interaction of Mg(2+) remains similar. This unusual structure-property relation of Mg(2)SiO(4) glass demonstrates that by using containerless processing it may be possible to synthesize new families of dense glasses and glass ceramics with zero porosity.
镁硅酸盐熔体的原子结构是理解地幔演化过程的关键,也是大多数火成岩形成的前体。镁硅酸盐的组成也代表了许多玻璃陶瓷的主要成分,并且根据其组成可以跨越玻璃形成的整个脆性范围。富硅顽火辉石(MgSiO(3))组成是一种很好的玻璃形成体,而镁橄榄石(Mg(2)SiO(4))组成则处于玻璃形成的极限。在这里,使用反向蒙特卡罗拟合衍射数据和密度泛函理论对悬浮液中获得的 MgSiO(3)和 Mg(2)SiO(4)组成玻璃的结构进行了建模。环统计分析表明,Mg(2)SiO(4)玻璃较低的成玻璃能力与其拓扑有序且非常狭窄的环分布有关。MgO(x)多面体在 MgSiO(3)和 Mg(2)SiO(4)玻璃中具有各种不规则形状,空腔分析表明,由于 MgO(x)-MgO(x)多面体的边缘共享贡献很大,两种玻璃几乎没有自由体积。结果发现,尽管玻璃中 Mg 阳离子的原子体积与晶相相比有所增加,但 Mg-O 键的数量减少了,尽管 Mg(2+)的有效化学相互作用仍然相似。Mg(2)SiO(4)玻璃这种不寻常的结构-性能关系表明,通过使用无容器处理,可能有可能合成具有零孔隙率的新型致密玻璃和玻璃陶瓷。