Suppr超能文献

通过 WGCNA 和机器学习算法鉴定心力衰竭和肝细胞癌的共诊断基因。

Identification of Co-diagnostic Genes for Heart Failure and Hepatocellular Carcinoma Through WGCNA and Machine Learning Algorithms.

机构信息

School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, China.

University of Shanghai for Science and Technology, Shanghai, 200093, China.

出版信息

Mol Biotechnol. 2024 May;66(5):1229-1245. doi: 10.1007/s12033-023-01025-1. Epub 2024 Jan 18.

Abstract

This research delves into the intricate relationship between hepatocellular carcinoma (HCC) and heart failure (HF) by exploring shared genetic characteristics and molecular processes. Employing advanced methodologies such as differential analysis, weighted correlation network analysis (WGCNA), and algorithms like Random Forest (RF), Least Absolute Shrinkage Selection (LASSO), and XGBoost, we meticulously identified modular differential genes (DEGs) associated with both HF and HCC. Gene Set Variation Analysis (GSVA) and single sample gene set enrichment analysis (ssGSEA) were employed to unveil underlying biological mechanisms. The study revealed 88 core genes shared between HF and HCC, indicating a common mechanism. Enrichment analysis emphasized the roles of immune responses and inflammation in both diseases. Leveraging XGBoost, we crafted a robust multigene diagnostic model (including FCN3, MAP2K1, AP3M2, CDH19) with an area under the curve (AUC) > 0.9, showcasing exceptional predictive accuracy. GSVA and ssGSEA analyses unveiled the involvement of immune cells and metabolic pathways in the pathogenesis of HF and HCC. This research uncovers a pivotal interplay between HF and HCC, highlighting shared pathways and key genes, offering promising insights for future clinical treatments and experimental research endeavors.

摘要

这项研究通过探索共同的遗传特征和分子过程,深入研究了肝细胞癌 (HCC) 和心力衰竭 (HF) 之间的复杂关系。研究采用了差异分析、加权相关网络分析 (WGCNA) 和随机森林 (RF)、最小绝对收缩选择 (LASSO) 和 XGBoost 等先进方法,精心鉴定了与 HF 和 HCC 相关的模块差异基因 (DEGs)。采用基因集变异分析 (GSVA) 和单样本基因集富集分析 (ssGSEA) 揭示潜在的生物学机制。研究揭示了 HF 和 HCC 之间存在 88 个核心共有基因,表明存在共同的机制。富集分析强调了免疫反应和炎症在这两种疾病中的作用。研究利用 XGBoost 构建了一个稳健的多基因诊断模型 (包括 FCN3、MAP2K1、AP3M2、CDH19),曲线下面积 (AUC) > 0.9,展示了出色的预测准确性。GSVA 和 ssGSEA 分析揭示了免疫细胞和代谢途径在 HF 和 HCC 发病机制中的参与。这项研究揭示了 HF 和 HCC 之间的关键相互作用,强调了共同的途径和关键基因,为未来的临床治疗和实验研究提供了有前景的见解。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验