Suppr超能文献

生物信息学和机器学习方法鉴定 MGST1 和 QPCT 为重症急性胰腺炎的新型生物标志物。

Bioinformatics and Machine Learning Methods Identified MGST1 and QPCT as Novel Biomarkers for Severe Acute Pancreatitis.

机构信息

Department of Emergency Medicine, Armed Police Henan Corps Hospital, No. 1 Kangfu Middle Street, Erqi District, Zhengzhou, 450052, Henan, China.

Department of General Surgery, Armed Police Henan Corps Hospital, No. 1 Kangfu Middle Street, Erqi District, Zhengzhou, 450052, Henan, China.

出版信息

Mol Biotechnol. 2024 May;66(5):1246-1265. doi: 10.1007/s12033-023-01026-0. Epub 2024 Jan 18.

Abstract

Severe acute pancreatitis (SAP) is a life-threatening gastrointestinal emergency. The study aimed to identify biomarkers and investigate molecular mechanisms of SAP. The GSE194331 dataset from GEO database was analyzed using bioinformatics. Differentially expressed genes (DEGs) associated with SAP were identified, and a protein-protein interaction network (PPI) was constructed. Machine learning algorithms were used to determine potential biomarkers. Gene set enrichment analysis (GSEA) explored molecular mechanisms. Immune cell infiltration were analyzed, and correlation between biomarker expression and immune cell infiltration was calculated. A competing endogenous RNA network (ceRNA) was constructed, and biomarker expression levels were quantified in clinical samples using RT-PCR. 1101 DEGs were found, with two modules most relevant to SAP. Potential biomarkers in peripheral blood samples were identified as glutathione S-transferase 1 (MGST1) and glutamyl peptidyltransferase (QPCT). GSEA revealed their association with immunoglobulin regulation, with QPCT potentially linked to pancreatic cancer development. Correlation between biomarkers and immune cell infiltration was demonstrated. A ceRNA network consisting of 39 nodes and 41 edges was constructed. Elevated expression levels of MGST1 and QPCT were verified in clinical samples. In conclusion, peripheral blood MGST1 and QPCT show promise as SAP biomarkers for diagnosis, providing targets for therapeutic intervention and contributing to SAP understanding.

摘要

严重急性胰腺炎(SAP)是一种危及生命的胃肠道急症。本研究旨在鉴定 SAP 的生物标志物并探讨其分子机制。使用生物信息学方法对 GEO 数据库中的 GSE194331 数据集进行分析。鉴定与 SAP 相关的差异表达基因(DEGs),构建蛋白质-蛋白质相互作用网络(PPI)。使用机器学习算法确定潜在的生物标志物。基因集富集分析(GSEA)探索分子机制。分析免疫细胞浸润,并计算生物标志物表达与免疫细胞浸润之间的相关性。构建竞争性内源 RNA 网络(ceRNA),并使用 RT-PCR 定量检测临床样本中的生物标志物表达水平。发现了 1101 个 DEGs,其中两个模块与 SAP 最相关。鉴定出外周血样本中的潜在生物标志物为谷胱甘肽 S-转移酶 1(MGST1)和谷氨酰肽基转移酶(QPCT)。GSEA 表明它们与免疫球蛋白调节有关,QPCT 可能与胰腺癌的发展有关。证明了生物标志物与免疫细胞浸润之间的相关性。构建了一个由 39 个节点和 41 个边缘组成的 ceRNA 网络。在临床样本中验证了 MGST1 和 QPCT 的表达水平升高。综上所述,外周血 MGST1 和 QPCT 有望成为 SAP 的诊断生物标志物,为治疗干预提供靶点,并有助于深入了解 SAP。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验