School of Electrical Engineering, Nantong University, Nantong, Jiangsu, 226001, China; Nantong Key Laboratory of Intelligent Control and Intelligent Computing, Nantong, Jiangsu, 226001, China; Nantong Key Laboratory of Intelligent Medicine Innovation and Transformation, Nantong, Jiangsu, 226001, China.
School of Electrical Engineering, Nantong University, Nantong, Jiangsu, 226001, China.
Comput Biol Med. 2024 Mar;170:107916. doi: 10.1016/j.compbiomed.2023.107916. Epub 2024 Jan 8.
In the medical field, the application of machine learning technology in the automatic diagnosis and monitoring of osteoporosis often faces challenges related to domain adaptation in drug therapy research. The existing neural networks used for the diagnosis of osteoporosis may experience a decrease in model performance when applied to new data domains due to changes in radiation dose and equipment. To address this issue, in this study, we propose a new method for multi domain diagnostic and quantitative computed tomography (QCT) images, called DeepmdQCT. This method adopts a domain invariant feature strategy and integrates a comprehensive attention mechanism to guide the fusion of global and local features, effectively improving the diagnostic performance of multi domain CT images. We conducted experimental evaluations on a self-created OQCT dataset, and the results showed that for dose domain images, the average accuracy reached 91%, while for device domain images, the accuracy reached 90.5%. our method successfully estimated bone density values, with a fit of 0.95 to the gold standard. Our method not only achieved high accuracy in CT images in the dose and equipment fields, but also successfully estimated key bone density values, which is crucial for evaluating the effectiveness of osteoporosis drug treatment. In addition, we validated the effectiveness of our architecture in feature extraction using three publicly available datasets. We also encourage the application of the DeepmdQCT method to a wider range of medical image analysis fields to improve the performance of multi-domain images.
在医学领域,机器学习技术在骨质疏松症的自动诊断和监测中的应用通常面临药物治疗研究领域适应问题的挑战。现有的用于诊断骨质疏松症的神经网络在应用于新的数据域时,由于辐射剂量和设备的变化,可能会导致模型性能下降。为了解决这个问题,在本研究中,我们提出了一种用于多领域诊断和定量计算机断层扫描(QCT)图像的新方法,称为 DeepmdQCT。该方法采用域不变特征策略,并集成了全面注意机制来指导全局和局部特征的融合,有效提高了多领域 CT 图像的诊断性能。我们在自建的 OQCT 数据集上进行了实验评估,结果表明,对于剂量域图像,平均准确率达到 91%,而对于设备域图像,准确率达到 90.5%。我们的方法成功估计了骨密度值,与黄金标准的拟合度为 0.95。我们的方法不仅在剂量和设备领域的 CT 图像中实现了高精度,还成功估计了关键的骨密度值,这对于评估骨质疏松症药物治疗的效果至关重要。此外,我们使用三个公开可用的数据集验证了我们的架构在特征提取方面的有效性。我们还鼓励将 DeepmdQCT 方法应用于更广泛的医学图像分析领域,以提高多领域图像的性能。