Suppr超能文献

CT 图像中骨质疏松症分类的端到端多任务联合学习模型。

End to End Multitask Joint Learning Model for Osteoporosis Classification in CT Images.

机构信息

School of Electrical Engineering, Nantong University, Nantong, Jiangsu 226001, China.

Nantong Key Laboratory of Intelligent Control and Intelligent Computing, Nantong, Jiangsu 226001, China.

出版信息

Comput Intell Neurosci. 2023 Mar 15;2023:3018320. doi: 10.1155/2023/3018320. eCollection 2023.

Abstract

Osteoporosis is a significant global health concern that can be difficult to detect early due to a lack of symptoms. At present, the examination of osteoporosis depends mainly on methods containing dual-energyX-ray, quantitative CT, etc., which are high costs in terms of equipment and human time. Therefore, a more efficient and economical method is urgently needed for diagnosing osteoporosis. With the development of deep learning, automatic diagnosis models for various diseases have been proposed. However, the establishment of these models generally requires images with only lesion areas, and annotating the lesion areas is time-consuming. To address this challenge, we propose a joint learning framework for osteoporosis diagnosis that combines localization, segmentation, and classification to enhance diagnostic accuracy. Our method includes a boundary heat map regression branch for thinning segmentation and a gated convolution module for adjusting context features in the classification module. We also integrate segmentation and classification features and propose a feature fusion module to adjust the weight of different levels of vertebrae. We trained our model on a self-built dataset and achieved an overall accuracy rate of 93.3% for the three label categories (normal, osteopenia, and osteoporosis) in the testing datasets. The area under the curve for the normal category is 0.973; for the osteopenia category, it is 0.965; and for the osteoporosis category, it is 0.985. Our method provides a promising alternative for the diagnosis of osteoporosis at present.

摘要

骨质疏松症是一个全球性的健康问题,由于缺乏症状,早期很难发现。目前,骨质疏松症的检查主要依赖于双能 X 射线、定量 CT 等方法,这些方法在设备和人力方面成本都很高。因此,迫切需要一种更高效、更经济的方法来诊断骨质疏松症。随着深度学习的发展,已经提出了用于各种疾病的自动诊断模型。然而,这些模型的建立通常需要只包含病变区域的图像,而对病变区域进行注释是很耗时的。为了解决这一挑战,我们提出了一种联合学习框架,用于骨质疏松症的诊断,该框架结合了定位、分割和分类,以提高诊断的准确性。我们的方法包括一个用于细化分割的边界热图回归分支和一个用于调整分类模块中上下文特征的门控卷积模块。我们还整合了分割和分类特征,并提出了一个特征融合模块来调整不同水平椎体的权重。我们在自建数据集上进行了模型训练,在测试数据集中,三个标签类别(正常、骨量减少和骨质疏松)的整体准确率达到 93.3%。正常类别的曲线下面积为 0.973;骨量减少类别的曲线下面积为 0.965;骨质疏松类别的曲线下面积为 0.985。我们的方法为目前的骨质疏松症诊断提供了一种很有前途的替代方法。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/769f/10036193/913abf13451d/CIN2023-3018320.001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验