Suppr超能文献

先天性中枢性低通气综合征伴面型的计算机辅助诊断屏幕。

Computer-aided diagnostic screen for Congenital Central Hypoventilation Syndrome with facial phenotype.

机构信息

Division of Autonomic Medicine, Department of Pediatrics, Ann & Robert H. Lurie Children's Hospital of Chicago, Chicago, IL, USA.

Department of Pediatrics, Northwestern University Feinberg School of Medicine, Chicago, IL, USA.

出版信息

Pediatr Res. 2024 Jun;95(7):1843-1850. doi: 10.1038/s41390-023-02990-8. Epub 2024 Jan 18.

Abstract

BACKGROUND

Congenital Central Hypoventilation Syndrome (CCHS) has devastating consequences if not diagnosed promptly. Despite identification of the disease-defining gene PHOX2B and a facial phenotype, CCHS remains underdiagnosed. This study aimed to incorporate automated techniques on facial photos to screen for CCHS in a diverse pediatric cohort to improve early case identification and assess a facial phenotype-PHOX2B genotype relationship.

METHODS

Facial photos of children and young adults with CCHS were control-matched by age, sex, race/ethnicity. After validating landmarks, principal component analysis (PCA) was applied with logistic regression (LR) for feature attribution and machine learning models for subject classification and assessment by PHOX2B pathovariant.

RESULTS

Gradient-based feature attribution confirmed a subtle facial phenotype and models were successful in classifying CCHS: neural network performed best (median sensitivity 90% (IQR 84%, 95%)) on 179 clinical photos (versus LR and XGBoost, both 85% (IQR 75-76%, 90%)). Outcomes were comparable stratified by PHOX2B genotype and with the addition of publicly available CCHS photos (n = 104) using PCA and LR (sensitivity 83-89% (IQR 67-76%, 92-100%).

CONCLUSIONS

Utilizing facial features, findings suggest an automated, accessible classifier may be used to screen for CCHS in children with the phenotype and support providers to seek PHOX2B testing to improve the diagnostics.

IMPACT

Facial landmarking and principal component analysis on a diverse pediatric and young adult cohort with PHOX2B pathovariants delineated a distinct, subtle CCHS facial phenotype. Automated, low-cost machine learning models can detect a CCHS facial phenotype with a high sensitivity in screening to ultimately refer for disease-defining PHOX2B testing, potentially addressing gaps in disease underdiagnosis and allow for critical, timely intervention.

摘要

背景

先天性中枢性肺泡换气不足综合征(CCHS)如果不能及时诊断,后果将是毁灭性的。尽管已经确定了疾病定义基因 PHOX2B 和面部表型,但 CCHS 的诊断仍然不足。本研究旨在将自动化技术应用于面部照片,以在多样化的儿科队列中筛查 CCHS,从而改善早期病例识别,并评估面部表型与 PHOX2B 基因型的关系。

方法

通过年龄、性别、种族/民族对患有 CCHS 的儿童和年轻成人的面部照片进行对照匹配。在验证了地标后,应用主成分分析(PCA)结合逻辑回归(LR)进行特征归因,并应用机器学习模型进行对象分类和 PHOX2B 病理变异体评估。

结果

基于梯度的特征归因证实了一种微妙的面部表型,并且模型成功地对 CCHS 进行了分类:神经网络在 179 张临床照片上表现最佳(中位数敏感性 90%(IQR 84%,95%))(与 LR 和 XGBoost 相比,均为 85%(IQR 75-76%,90%))。根据 PHOX2B 基因型和使用 PCA 和 LR 对来自公开的 CCHS 照片(n=104)进行分层,结果是可比的(敏感性 83-89%(IQR 67-76%,92-100%))。

结论

利用面部特征,研究结果表明,一种自动化、易于访问的分类器可用于筛选具有该表型的儿童的 CCHS,并支持提供者寻求 PHOX2B 检测,以改善诊断。

影响

在具有 PHOX2B 病理变异体的多样化儿科和年轻成人队列中进行面部地标和主成分分析,描绘了一个独特的、微妙的 CCHS 面部表型。自动化、低成本的机器学习模型可以在筛查中以高敏感性检测到 CCHS 面部表型,最终可用于疾病定义性 PHOX2B 检测,这可能解决疾病诊断不足的差距,并允许进行关键的、及时的干预。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验