Suppr超能文献

针对罕见病患儿的自动面部地标定位。

An automatic facial landmarking for children with rare diseases.

作者信息

Hennocq Quentin, Bongibault Thomas, Bizière Matthieu, Delassus Ombline, Douillet Maxime, Cormier-Daire Valérie, Amiel Jeanne, Lyonnet Stanislas, Marlin Sandrine, Rio Marlène, Picard Arnaud, Khonsari Roman Hossein, Garcelon Nicolas

机构信息

Imagine Institute, INSERM UMR 1163, Paris, France.

Département de chirurgie maxillo-faciale et chirurgie plastique pédiatrique, Hôpital Necker - Enfants Malades, Assistance Publique - Hôpitaux de Paris, Centre de Référence des Malformations Rares de la Face et de la Cavité Buccale MAFACE, Filière Maladies Rares TeteCou, Faculté de Médecine, Université de Paris Cité, Paris, France.

出版信息

Am J Med Genet A. 2023 May;191(5):1210-1221. doi: 10.1002/ajmg.a.63126. Epub 2023 Jan 30.

Abstract

Two to three thousand syndromes modify facial features: their screening requires the eye of an expert in dysmorphology. A widely used tool in shape characterization is geometric morphometrics based on landmarks, which are precise and reproducible anatomical points. Landmark positioning is user dependent and time consuming. Many automatic landmarking tools are currently available but do not work for children, because they have mainly been trained using photographic databases of healthy adults. Here, we developed a method for building an automatic landmarking pipeline for frontal and lateral facial photographs as well as photographs of external ears. We evaluated the algorithm on patients diagnosed with Treacher Collins (TC) syndrome as it is the most frequent mandibulofacial dysostosis in humans and is clinically recognizable although highly variable in severity. We extracted photographs from the photographic database of the maxillofacial surgery and plastic surgery department of Hôpital Necker-Enfants Malades in Paris, France with the diagnosis of TC syndrome. The control group was built from children admitted for craniofacial trauma or skin lesions. After testing two methods of object detection by bounding boxes, a Haar Cascade-based tool and a Faster Region-based Convolutional Neural Network (Faster R-CNN)-based tool, we evaluated three different automatic annotation algorithms: the patch-based active appearance model (AAM), the holistic AAM, and the constrained local model (CLM). The final error corresponding to the distance between the points placed by automatic annotation and those placed by manual annotation was reported. We included, respectively, 1664, 2044, and 1375 manually annotated frontal, profile, and ear photographs. Object recognition was optimized with the Faster R-CNN-based detector. The best annotation model was the patch-based AAM (p < 0.001 for frontal faces, p = 0.082 for profile faces and p < 0.001 for ears). This automatic annotation model resulted in the same classification performance as manually annotated data. Pretraining on public photographs did not improve the performance of the model. We defined a pipeline to create automatic annotation models adapted to faces with congenital anomalies, an essential prerequisite for research in dysmorphology.

摘要

两到三千种综合征会改变面部特征

对它们进行筛查需要畸形学专家的慧眼。形状表征中一种广泛使用的工具是基于地标点的几何形态测量学,地标点是精确且可重复的解剖学点。地标点定位依赖用户且耗时。目前有许多自动地标点标注工具,但不适用于儿童,因为它们主要是使用健康成年人的照片数据库进行训练的。在此,我们开发了一种方法,用于构建针对正面和侧面面部照片以及外耳照片的自动地标点标注流程。我们在被诊断患有特雷彻·柯林斯(TC)综合征的患者身上评估了该算法,因为它是人类中最常见的下颌面部发育不全,虽然严重程度差异很大,但在临床上是可识别的。我们从法国巴黎内克尔儿童医院颌面外科和整形外科的照片数据库中提取了诊断为TC综合征的照片。对照组由因颅面创伤或皮肤病变入院的儿童组成。在测试了两种通过边界框进行目标检测的方法,即基于哈尔级联的工具和基于更快区域卷积神经网络(Faster R-CNN)的工具后,我们评估了三种不同的自动标注算法:基于补丁的主动外观模型(AAM)、整体AAM和约束局部模型(CLM)。报告了与自动标注放置的点和手动标注放置的点之间的距离相对应的最终误差。我们分别纳入了1664张、2044张和1375张手动标注的正面、侧面和耳部照片。使用基于Faster R-CNN的检测器优化了目标识别。最佳标注模型是基于补丁的AAM(正面面部p < 0.001,侧面面部p = 0.082,耳部p < 0.001)。这种自动标注模型产生的分类性能与手动标注数据相同。在公共照片上进行预训练并没有提高模型的性能。我们定义了一个流程来创建适用于先天性异常面部的自动标注模型,这是畸形学研究的一个基本前提。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验