Suppr超能文献

使用GECKO Toolbox 3.0对酶约束代谢模型进行重建、模拟和分析。

Reconstruction, simulation and analysis of enzyme-constrained metabolic models using GECKO Toolbox 3.0.

作者信息

Chen Yu, Gustafsson Johan, Tafur Rangel Albert, Anton Mihail, Domenzain Iván, Kittikunapong Cheewin, Li Feiran, Yuan Le, Nielsen Jens, Kerkhoven Eduard J

机构信息

Department of Life Sciences, Chalmers University of Technology, Gothenburg, Sweden.

Key Laboratory of Quantitative Synthetic Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China.

出版信息

Nat Protoc. 2024 Mar;19(3):629-667. doi: 10.1038/s41596-023-00931-7. Epub 2024 Jan 18.

Abstract

Genome-scale metabolic models (GEMs) are computational representations that enable mathematical exploration of metabolic behaviors within cellular and environmental constraints. Despite their wide usage in biotechnology, biomedicine and fundamental studies, there are many phenotypes that GEMs are unable to correctly predict. GECKO is a method to improve the predictive power of a GEM by incorporating enzymatic constraints using kinetic and omics data. GECKO has enabled reconstruction of enzyme-constrained metabolic models (ecModels) for diverse organisms, which show better predictive performance than conventional GEMs. In this protocol, we describe how to use the latest version GECKO 3.0; the procedure has five stages: (1) expansion from a starting metabolic model to an ecModel structure, (2) integration of enzyme turnover numbers into the ecModel structure, (3) model tuning, (4) integration of proteomics data into the ecModel and (5) simulation and analysis of ecModels. GECKO 3.0 incorporates deep learning-predicted enzyme kinetics, paving the way for improved metabolic models for virtually any organism and cell line in the absence of experimental data. The time of running the whole protocol is organism dependent, e.g., ~5 h for yeast.

摘要

基因组尺度代谢模型(GEMs)是一种计算模型,能够在细胞和环境约束条件下对代谢行为进行数学探索。尽管它们在生物技术、生物医学和基础研究中得到了广泛应用,但仍有许多表型是GEMs无法正确预测的。GECKO是一种通过利用动力学和组学数据纳入酶促约束来提高GEM预测能力的方法。GECKO能够为多种生物重建酶约束代谢模型(ecModels),这些模型比传统的GEMs具有更好的预测性能。在本方案中,我们描述了如何使用最新版本的GECKO 3.0;该过程有五个阶段:(1)从起始代谢模型扩展到ecModel结构,(2)将酶周转数整合到ecModel结构中,(3)模型调整,(4)将蛋白质组学数据整合到ecModel中,以及(5)ecModel的模拟和分析。GECKO 3.0纳入了深度学习预测的酶动力学,为在缺乏实验数据的情况下为几乎任何生物和细胞系改进代谢模型铺平了道路。运行整个方案的时间取决于生物,例如,酵母大约需要5小时。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验