Mariam Iqra, Rova Ulrika, Christakopoulos Paul, Matsakas Leonidas, Patel Alok
Biochemical Process Engineering, Division of Chemical Engineering, Department of Civil, Environmental, and Natural Resources Engineering, Luleå University of Technology, SE-971 87, Luleå, Sweden.
NPJ Syst Biol Appl. 2025 Jul 7;11(1):74. doi: 10.1038/s41540-025-00556-4.
The escalating global environmental crisis demands transformative biotechnological solutions that are both sustainable and scalable. This perspective advocates Data-Driven Synthetic Microbes (DDSM); engineered microorganisms designed through integrating omics, machine learning, and systems biology to tackle challenges like PFAS degradation, greenhouse gas mitigation, and sustainable biomanufacturing. DDSMs offer a rational framework for developing robust microbial systems, reshaping the future of synthetic biology toward environmental resilience and circular bioeconomy.
不断升级的全球环境危机需要可持续且可扩展的变革性生物技术解决方案。本文主张采用数据驱动的合成微生物(DDSM);通过整合组学、机器学习和系统生物学设计的工程微生物,以应对全氟和多氟烷基物质(PFAS)降解、温室气体减排和可持续生物制造等挑战。DDSM为开发强大的微生物系统提供了一个合理的框架,重塑合成生物学的未来,以实现环境恢复力和循环生物经济。
NPJ Syst Biol Appl. 2025-7-7
ACS Synth Biol. 2025-6-20
World J Microbiol Biotechnol. 2025-6-25
Methods Mol Biol. 2025
J Pharmacokinet Pharmacodyn. 2025-6-16
Open Res Eur. 2025-5-6
Microb Biotechnol. 2025-1
Anal Chim Acta. 2024-12-15
ACS Synth Biol. 2024-12-20
Nat Commun. 2024-11-12