Suppr超能文献

“母亲(大自然)最懂”——劫持天然设计的转录程序以提高解脂耶氏酵母的抗逆性和蛋白质生产;YaliFunTome 数据库介绍。

'Mother(Nature) knows best' - hijacking nature-designed transcriptional programs for enhancing stress resistance and protein production in Yarrowia lipolytica; presentation of YaliFunTome database.

机构信息

Department of Biotechnology and Food Microbiology, Poznan University of Life Sciences, 60-637, Poznań, Poland.

Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, 78350, Jouy-en-Josas, France.

出版信息

Microb Cell Fact. 2024 Jan 18;23(1):26. doi: 10.1186/s12934-023-02285-x.

Abstract

BACKGROUND

In the era of rationally designed synthetic biology, heterologous metabolites production, and other counter-nature engineering of cellular metabolism, we took a step back and recalled that 'Mother(-Nature) knows best'. While still aiming at synthetic, non-natural outcomes of generating an 'over-production phenotype' we dug into the pre-designed transcriptional programs evolved in our host organism-Yarrowia lipolytica, hoping that some of these fine-tuned orchestrated programs could be hijacked and used. Having an interest in the practical outcomes of the research, we targeted industrially-relevant functionalities-stress resistance and enhanced synthesis of proteins, and gauged them over extensive experimental design's completion.

RESULTS

Technically, the problem was addressed by screening a broad library of over 120 Y. lipolytica strains under 72 combinations of variables through a carefully pre-optimized high-throughput cultivation protocol, which enabled actual phenotype development. The abundance of the transcription program elicitors-transcription factors (TFs), was secured by their overexpression, while challenging the strains with the multitude of conditions was inflicted to impact their activation stratus. The data were subjected to mathematical modeling to increase their informativeness. The amount of the gathered data prompted us to present them in the form of a searchable catalog - the YaliFunTome database ( https://sparrow.up.poznan.pl/tsdatabase/ )-to facilitate the withdrawal of biological sense from numerical data. We succeeded in the identification of TFs that act as omni-boosters of protein synthesis, enhance resistance to limited oxygen availability, and improve protein synthesis capacity under inorganic nitrogen provision.

CONCLUSIONS

All potential users are invited to browse YaliFunTome in the search for homologous TFs and the TF-driven phenotypes of interest.

摘要

背景

在理性设计合成生物学、异源代谢产物生产和细胞代谢的其他反自然工程时代,我们退一步,回顾了“大自然(母亲)最懂”的道理。虽然我们仍旨在通过生成“过度生产表型”的非天然、非合成结果,但我们深入研究了我们的宿主生物体——解脂耶氏酵母中预先设计的转录程序,希望能够利用其中一些经过微调的协调程序。由于对研究的实际结果感兴趣,我们针对工业相关功能——抗应激能力和蛋白质的增强合成,并通过广泛的实验设计完成来衡量它们。

结果

从技术上讲,通过使用精心预优化的高通量培养方案,在 72 种变量组合下筛选了超过 120 种解脂耶氏酵母菌株的广泛文库,解决了这个问题,这使得实际表型得以发展。转录程序引发剂——转录因子(TFs)的丰度通过它们的过表达来保证,同时通过施加多种条件来挑战菌株,以影响它们的激活状态。对数据进行数学建模以提高其信息量。收集的数据量促使我们以可搜索目录的形式呈现它们 - YaliFunTome 数据库(https://sparrow.up.poznan.pl/tsdatabase/) - 以便从数值数据中提取生物学意义。我们成功鉴定了一些 TF,它们可以作为蛋白质合成的全能增强剂,增强对有限氧气供应的抗性,并在提供无机氮的情况下提高蛋白质合成能力。

结论

所有潜在用户都被邀请浏览 YaliFunTome,以寻找同源 TF 和感兴趣的 TF 驱动表型。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ecd0/10797999/3bcb1ab839bd/12934_2023_2285_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验