Onésime Djamila, Lebrun Esteban, Petrovic Goran Stanajic, Celińska Ewelina, Nicaud Jean-Marc
INRAE, AgroParisTech, Micalis Institute, UMR1319, Université Paris-Saclay, Domaine de Vilvert, 78350, Jouy-en-Josas, France.
Department of Biotechnology and Food Microbiology, Poznan University of Life Sciences, Ul. Wojska Polskiego 48, 60-637, Poznań, Poland.
Microb Cell Fact. 2025 Jul 10;24(1):164. doi: 10.1186/s12934-025-02787-w.
Yarrowia lipolytica has emerged as a well-established platform for producing a wide range of biomolecules, including recombinant proteins (rProteins). Its robust metabolism and resistance to various environmental stressors make it particularly well-suited as a microbial cell factory. However, additional physiological modifications are still required to fully meet industrial demands. Over years of strain development, Y. lipolytica has been engineered to carry auxotrophic markers, streamline the secretory pathway via deletion of native secretory proteins, prevent filamentation, and enable inducible gene expression systems.
In this study, we continued the fine-tuning of Y. lipolytica as a platform for rProtein synthesis, building on previous work. Specifically, we: (i) introduced a third auxotrophy to facilitate more complex genetic engineering strategies, (ii) removed bacterial vector elements (including antibiotic resistance genes) from previous constructs, and (iii) carried out extensive deletions of extracellular proteases and a peroxidase gene. The newly constructed chassis strains, JMY9438 and JMY9451/9452, both bear triple auxotrophies. The latter strain additionally lacks proteolytic activity due to the deletion of five protease genes. We evaluated the rProtein production efficiency of these strains harboring one, two or three integrated copies of the target gene. rProtein expression levels increased with copy number up to two; however, no further improvement was observed with three copies. Notably, the strain with protease deletions and a single gene copy showed the highest rProtein production per cell, while the strain retaining proteases but harboring two copies yielded the highest absolute rProtein levels.
We present a new generation of Y. lipolytica chassis strains specifically optimized for recombinant protein production. Our results demonstrate that extensive protease deletions can provide a high-performance genetic background, enabling high-level rProtein production without relying on multi-copy expression strategies.
解脂耶氏酵母已成为生产多种生物分子(包括重组蛋白)的成熟平台。其强大的代谢能力和对各种环境应激源的抗性使其特别适合作为微生物细胞工厂。然而,仍需要进行额外的生理修饰以完全满足工业需求。经过多年的菌株开发,解脂耶氏酵母已被改造为携带营养缺陷型标记,通过删除天然分泌蛋白来简化分泌途径,防止丝状化,并启用诱导型基因表达系统。
在本研究中,我们在先前工作的基础上继续对解脂耶氏酵母作为重组蛋白合成平台进行微调。具体而言,我们:(i)引入第三种营养缺陷型以促进更复杂的基因工程策略,(ii)从先前构建体中去除细菌载体元件(包括抗生素抗性基因),以及(iii)广泛删除细胞外蛋白酶和一个过氧化物酶基因。新构建的底盘菌株JMY9438和JMY9451/9452均具有三重营养缺陷型。后一种菌株由于五个蛋白酶基因的缺失而额外缺乏蛋白水解活性。我们评估了这些携带目标基因一、二或三个整合拷贝的菌株的重组蛋白生产效率。重组蛋白表达水平随着拷贝数增加到两个而升高;然而,三个拷贝时未观察到进一步改善。值得注意的是,具有蛋白酶缺失和单基因拷贝的菌株显示出每细胞最高的重组蛋白产量,而保留蛋白酶但携带两个拷贝的菌株产生了最高的绝对重组蛋白水平。
我们展示了专门为重组蛋白生产优化的新一代解脂耶氏酵母底盘菌株。我们的结果表明,广泛的蛋白酶缺失可以提供高性能的遗传背景,无需依赖多拷贝表达策略即可实现高水平的重组蛋白生产。