Suppr超能文献

设计用于稳定硅纳米片负极的兼容陶瓷/聚合物复合固态电解质。

Designing Compatible Ceramic/Polymer Composite Solid-State Electrolyte for Stable Silicon Nanosheet Anodes.

作者信息

Liu Xianzheng, Wang Dong, Wang Xintong, Wang Deyu, Li Yan, Fu Jie, Zhang Rui, Liu Zhiyuan, Zhou Yuanzhao, Wen Guangwu

机构信息

School of Materials Science and Engineering, Shandong University of Technology, Zibo, 255000, P. R. China.

Shandong Silicon Nano New Material Technology Co. LTD, Zibo, 255000, P. R. China.

出版信息

Small. 2024 Jun;20(25):e2309724. doi: 10.1002/smll.202309724. Epub 2024 Jan 18.

Abstract

The commercialization of silicon anode for lithium-ion batteries has been hindered by severe structure fracture and continuous interfacial reaction against liquid electrolytes, which can be mitigated by solid-state electrolytes. However, rigid ceramic electrolyte suffers from large electrolyte/electrode interfacial resistance, and polymer electrolyte undergoes poor ionic conductivity, both of which are worsened by volume expansion of silicon. Herein, by dispersing LiAlTi(PO) (LATP) into poly(vinylidene fluoride)-hexafluoropropylene (PVDF-HFP) and poly(ethylene oxide) (PEO) matrix, the PVDF-HFP/PEO/LATP (PHP-L) solid-state electrolyte with high ionic conductivity (1.40 × 10 S cm), high tensile strength and flexibility is designed, achieving brilliant compatibility with silicon nanosheets. The chemical interactions between PVDF-HFP and PEO, LATP increase amorphous degree of polymer, accelerating Li transfer. Good flexibility of the PHP-L contributes to adaptive structure variation of electrolyte with silicon expansion/shrinkage, ensuring swift interfacial ions transfer. Moreover, the solid membrane with high tensile limits electrode structural degradation and eliminates continuous interfacial growth to form stable 2D solid electrolyte interface (SEI) film, achieving superior cyclic performance to liquid electrolytes. The Si//PHP-L15//LiFePO solid-state full-cell exhibits stable lithium storage with 81% capacity retention after 100 cycles. This work demonstrates the effectiveness of composite solid electrolyte in addressing fundamental interfacial and performance challenges of silicon anodes.

摘要

锂离子电池硅负极的商业化一直受到严重的结构断裂以及与液体电解质持续的界面反应的阻碍,而固态电解质可以缓解这些问题。然而,刚性陶瓷电解质存在较大的电解质/电极界面电阻,聚合物电解质的离子电导率较差,而这两者都会因硅的体积膨胀而恶化。在此,通过将LiAlTi(PO)(LATP)分散到聚偏氟乙烯-六氟丙烯(PVDF-HFP)和聚环氧乙烷(PEO)基体中,设计出了具有高离子电导率(1.40×10 S cm)、高拉伸强度和柔韧性的PVDF-HFP/PEO/LATP(PHP-L)固态电解质,实现了与硅纳米片的优异相容性。PVDF-HFP与PEO、LATP之间的化学相互作用增加了聚合物的非晶度,加速了锂的传输。PHP-L良好的柔韧性有助于电解质随硅的膨胀/收缩而进行适应性结构变化,确保界面离子的快速传输。此外,具有高拉伸强度的固体膜限制了电极结构的降解,并消除了持续的界面生长,形成稳定的二维固体电解质界面(SEI)膜,实现了比液体电解质更优异的循环性能。Si//PHP-L15//LiFePO固态全电池表现出稳定的锂存储性能,100次循环后容量保持率为81%。这项工作证明了复合固态电解质在解决硅负极基本界面和性能挑战方面的有效性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验