Suppr超能文献

一组抽象概念中的分类结构。

Taxonomic structure in a set of abstract concepts.

作者信息

Persichetti Andrew S, Shao Jiayu, Denning Joseph M, Gotts Stephen J, Martin Alex

机构信息

Section on Cognitive Neuropsychology, Laboratory of Brain and Cognition, National Institute of Mental Health, National Institutes of Health, Bethesda, ML, United States.

Department of Psychology, University of California Los Angeles, Los Angeles, CA, United States.

出版信息

Front Psychol. 2024 Jan 4;14:1278744. doi: 10.3389/fpsyg.2023.1278744. eCollection 2023.

Abstract

A large portion of human knowledge comprises "abstract" concepts that lack readily perceivable properties (e.g., "love" and "justice"). Since abstract concepts lack such properties, they have historically been treated as an undifferentiated category of knowledge in the psychology and neuropsychology literatures. More recently, the categorical structure of abstract concepts is often explored using paradigms that ask participants to make explicit judgments about a set of concepts along dimensions that are predetermined by the experimenter. Such methods require the experimenter to select dimensions that are relevant to the concepts and further that people make explicit judgments that accurately reflect their mental representations. We bypassed these requirements by collecting two large sets of non-verbal and implicit judgments about which dimensions are relevant to the similarity between pairs of 50 abstract nouns to determine the representational space of the concepts. We then identified categories within the representational space using a clustering procedure that required categories to replicate across two independent data sets. In a separate experiment, we used automatic semantic priming to further validate the categories and to show that they are an improvement over categories that were defined within the same set of abstract concepts using explicit ratings along predetermined dimensions. These results demonstrate that abstract concepts can be characterized beyond their negative relation to concrete concepts and that categories of abstract concepts can be defined without using dimensions for the concepts or explicit judgments from participants.

摘要

人类知识的很大一部分由缺乏易于感知属性的“抽象”概念组成(例如,“爱”和“正义”)。由于抽象概念缺乏此类属性,在心理学和神经心理学文献中,它们在历史上一直被视为一种未分化的知识类别。最近,抽象概念的分类结构通常使用这样的范式来探索,即要求参与者沿着实验者预先确定的维度对一组概念做出明确的判断。此类方法要求实验者选择与概念相关的维度,并且要求人们做出能够准确反映其心理表征的明确判断。我们通过收集两组关于哪些维度与50对抽象名词之间的相似性相关的大量非语言和隐性判断,绕过了这些要求,以确定这些概念的表征空间。然后,我们使用一种聚类程序在表征空间中识别类别,该程序要求类别在两个独立的数据集中重复出现。在另一个实验中,我们使用自动语义启动来进一步验证这些类别,并表明它们比使用沿着预先确定的维度的明确评分在同一组抽象概念中定义的类别有所改进。这些结果表明,抽象概念可以超越其与具体概念的消极关系来进行表征,并且抽象概念的类别可以在不使用概念维度或参与者明确判断的情况下进行定义。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bdcb/10794597/97f7c1dfce0b/fpsyg-14-1278744-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验