Suppr超能文献

使用脑电图拓扑数据分析和机器学习对老年人轻度认知障碍进行预测及认知分数回归,并在情感回忆范式中评估意识。

Mild cognitive impairment prediction and cognitive score regression in the elderly using EEG topological data analysis and machine learning with awareness assessed in affective reminiscent paradigm.

作者信息

Rutkowski Tomasz M, Komendziński Tomasz, Otake-Matsuura Mihoko

机构信息

RIKEN Center for Advanced Intelligence Project, Tokyo, Japan.

Graduate School of Education, The University of Tokyo, Tokyo, Japan.

出版信息

Front Aging Neurosci. 2024 Jan 4;15:1294139. doi: 10.3389/fnagi.2023.1294139. eCollection 2023.

Abstract

INTRODUCTION

The main objective of this study is to evaluate working memory and determine EEG biomarkers that can assist in the field of health neuroscience. Our ultimate goal is to utilize this approach to predict the early signs of mild cognitive impairment (MCI) in healthy elderly individuals, which could potentially lead to dementia. The advancements in health neuroscience research have revealed that affective reminiscence stimulation is an effective method for developing EEG-based neuro-biomarkers that can detect the signs of MCI.

METHODS

We use topological data analysis (TDA) on multivariate EEG data to extract features that can be used for unsupervised clustering, subsequent machine learning-based classification, and cognitive score regression. We perform EEG experiments to evaluate conscious awareness in affective reminiscent photography settings.

RESULTS

We use EEG and interior photography to distinguish between healthy cognitive aging and MCI. Our clustering UMAP and random forest application accurately predict MCI stage and MoCA scores.

DISCUSSION

Our team has successfully implemented TDA feature extraction, MCI classification, and an initial regression of MoCA scores. However, our study has certain limitations due to a small sample size of only 23 participants and an unbalanced class distribution. To enhance the accuracy and validity of our results, future research should focus on expanding the sample size, ensuring gender balance, and extending the study to a cross-cultural context.

摘要

引言

本研究的主要目的是评估工作记忆并确定可辅助健康神经科学领域的脑电图生物标志物。我们的最终目标是利用这种方法预测健康老年人轻度认知障碍(MCI)的早期迹象,这可能会发展为痴呆症。健康神经科学研究的进展表明,情感回忆刺激是开发基于脑电图的神经生物标志物以检测MCI迹象的有效方法。

方法

我们对多变量脑电图数据进行拓扑数据分析(TDA),以提取可用于无监督聚类、后续基于机器学习的分类以及认知评分回归的特征。我们进行脑电图实验以评估情感回忆摄影环境中的意识觉知。

结果

我们使用脑电图和室内摄影来区分健康的认知衰老和MCI。我们的聚类UMAP和随机森林应用准确预测了MCI阶段和蒙特利尔认知评估量表(MoCA)得分。

讨论

我们的团队已成功实施TDA特征提取、MCI分类以及MoCA得分的初步回归。然而,由于样本量仅23名参与者且类别分布不均衡,我们的研究存在一定局限性。为提高结果的准确性和有效性,未来研究应侧重于扩大样本量、确保性别平衡,并将研究扩展到跨文化背景。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/33ef/10794306/7b8a5b4bac08/fnagi-15-1294139-g0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验