Annu Int Conf IEEE Eng Med Biol Soc. 2022 Jul;2022:4056-4059. doi: 10.1109/EMBC48229.2022.9871991.
An efficient machine learning (ML) implementation in the so-called 'AI for social good' domain shall contribute to dementia digital neuro-biomarker development for early-onset prognosis of a possible cognitive decline. We report encouraging initial developments of wearable EEG-derived theta-band fluctuations examination and a successive classification embracing a time-series complexity examination with a multifractal detrended fluctuation analysis (MFDFA) in the face or emotion video-clip identification short-term oddball memory tasks. We also report findings from a thirty-five elderly volunteer pilot study that EEG responses to instructed to ignore (inhibited) oddball paradigm stimulation results in more informative MFDFA features, leading to better machine learning classification results. The reported pilot project showcases vital social assistance of artificial intelligence (AI) application for an early-onset dementia prognosis. Clinical Relevance- This introduces a candidate for an objective digital neuro-biomarker from theta-band EEG recorded by a wearable for a plausible replacement of biased 'paper & pencil' tests for a mild cognitive impairment (MCI) evaluation.
在所谓的“人工智能造福社会”领域中,高效的机器学习 (ML) 实现将有助于开发痴呆症的数字神经生物标志物,以对可能的认知能力下降进行早期预后。我们报告了令人鼓舞的初始进展,即对可穿戴式脑电图衍生的θ波段波动进行检查,并对包括时间序列复杂性检查在内的分类进行了后续检查,该分类采用了多重分形去趋势波动分析 (MFDFA),用于面部或情绪视频片段识别短期的奇特记忆任务。我们还报告了一项针对 35 名老年志愿者的试点研究的结果,该研究发现,对指令忽略(抑制)奇特范式刺激的脑电图反应会产生更具信息量的 MFDFA 特征,从而导致更好的机器学习分类结果。该试点项目展示了人工智能 (AI) 应用在早期痴呆症预后方面的重要社会辅助作用。临床相关性-这为通过可穿戴式设备记录的θ波段脑电图提供了一个潜在的客观数字神经生物标志物候选,以合理替代有偏差的“纸笔”测试,用于轻度认知障碍 (MCI) 评估。