Suppr超能文献

基于脑电图网络拓扑特征的早发性痴呆神经生物标志物机器学习方法。

Machine learning approach for early onset dementia neurobiomarker using EEG network topology features.

作者信息

Rutkowski Tomasz M, Abe Masato S, Komendzinski Tomasz, Sugimoto Hikaru, Narebski Stanislaw, Otake-Matsuura Mihoko

机构信息

RIKEN Center for Advanced Intelligence Project, Tokyo, Japan.

The University of Tokyo, Tokyo, Japan.

出版信息

Front Hum Neurosci. 2023 Jun 16;17:1155194. doi: 10.3389/fnhum.2023.1155194. eCollection 2023.

Abstract

INTRODUCTION

Modern neurotechnology research employing state-of-the-art machine learning algorithms within the so-called "AI for social good" domain contributes to improving the well-being of individuals with a disability. Using digital health technologies, home-based self-diagnostics, or cognitive decline managing approaches with neuro-biomarker feedback may be helpful for older adults to remain independent and improve their wellbeing. We report research results on early-onset dementia neuro-biomarkers to scrutinize cognitive-behavioral intervention management and digital non-pharmacological therapies.

METHODS

We present an empirical task in the EEG-based passive brain-computer interface application framework to assess working memory decline for forecasting a mild cognitive impairment. The EEG responses are analyzed in a framework of a network neuroscience technique applied to EEG time series for evaluation and to confirm the initial hypothesis of possible ML application modeling mild cognitive impairment prediction.

RESULTS

We report findings from a pilot study group in Poland for a cognitive decline prediction. We utilize two emotional working memory tasks by analyzing EEG responses to facial emotions reproduced in short videos. A reminiscent interior image oddball task is also employed to validate the proposed methodology further.

DISCUSSION

The proposed three experimental tasks in the current pilot study showcase the critical utilization of artificial intelligence for early-onset dementia prognosis in older adults.

摘要

引言

现代神经技术研究在所谓的“人工智能造福社会”领域采用最先进的机器学习算法,有助于改善残疾人士的福祉。使用数字健康技术、居家自我诊断或带有神经生物标志物反馈的认知衰退管理方法,可能有助于老年人保持独立并改善他们的福祉。我们报告了关于早发性痴呆神经生物标志物的研究结果,以审视认知行为干预管理和数字非药物疗法。

方法

我们在基于脑电图的被动脑机接口应用框架中提出一项实证任务,以评估工作记忆衰退,从而预测轻度认知障碍。在应用于脑电图时间序列的网络神经科学技术框架内分析脑电图反应,以进行评估并确认可能应用机器学习建模轻度认知障碍预测的初始假设。

结果

我们报告了波兰一个认知衰退预测试点研究组的研究结果。我们通过分析对短视频中再现的面部情绪的脑电图反应,利用两项情绪工作记忆任务。还采用了一个回忆内部图像异常球任务来进一步验证所提出的方法。

讨论

当前试点研究中提出的三项实验任务展示了人工智能在老年人早发性痴呆预后方面的关键应用。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/299a/10311997/49c0ae1e4b27/fnhum-17-1155194-g0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验