Li Jiaxin, Xu Yaolin, Li Pengzhou, Völkel Antje, Saldaña Fernando Igoa, Antonietti Markus, López-Salas Nieves, Odziomek Mateusz
Colloid Chemistry Department, Max Planck Institute of Colloids and Interfaces, Am Mühlenberg 1, 14476, Potsdam, Germany.
Institute of Electrochemical Energy Storage, Helmholtz-Zentrum Berlin für Materialien und Energie, 14109, Berlin, Germany.
Adv Mater. 2024 May;36(18):e2311655. doi: 10.1002/adma.202311655. Epub 2024 Jan 28.
Facile synthesis of porous carbon with high yield and high specific surface area (SSA) from low-cost molecular precursors offers promising opportunities for their industrial applications. However, conventional activation methods using potassium and sodium hydroxides or carbonates suffer from low yields (<20%) and poor control over porosity and composition especially when high SSAs are targeted (>2000 m g) because nanopores are typically created by etching. Herein, a non-etching activation strategy is demonstrated using cesium salts of low-cost carboxylic acids as the sole precursor in producing porous carbons with yields of up to 25% and SSAs reaching 3008 m g. The pore size and oxygen content can be adjusted by tuning the synthesis temperature or changing the molecular precursor. Mechanistic investigation unravels the non-classical role of cesium as an activating agent. The cesium compounds that form in situ, including carbonates, oxides, and metallic cesium, have extremely low work function enabling electron injection into organic/carbonaceous framework, promoting condensation, and intercalation of cesium ions into graphitic stacks forming slit pores. The resulting porous carbons deliver a high capacity of 252 mAh g (567 F g) and durability of 100 000 cycles as cathodes of Zn-ion capacitors, showing their potential for electrochemical energy storage.
从低成本分子前驱体出发,简便合成高产率、高比表面积(SSA)的多孔碳,为其工业应用提供了广阔前景。然而,使用氢氧化钾、氢氧化钠或碳酸盐的传统活化方法产率较低(<20%),且对孔隙率和组成的控制不佳,尤其是在目标比表面积较高(>2000 m²/g)时,因为纳米孔通常是通过蚀刻形成的。在此,展示了一种非蚀刻活化策略,使用低成本羧酸铯盐作为唯一前驱体来制备多孔碳,产率高达25%,比表面积达到3008 m²/g。通过调节合成温度或改变分子前驱体,可以调整孔径和氧含量。机理研究揭示了铯作为活化剂的非经典作用。原位形成的铯化合物,包括碳酸盐、氧化物和金属铯,具有极低的功函数,能够将电子注入有机/碳质骨架,促进缩合反应,并使铯离子嵌入石墨层间形成狭缝孔。所得多孔碳作为锌离子电容器的阴极,具有252 mAh/g(567 F/g)的高容量和100000次循环的耐久性,显示出其在电化学储能方面的潜力。