Suppr超能文献

从有偏差的随机游走中重建的网络的感知局部属性的识别。

Identifying the perceived local properties of networks reconstructed from biased random walks.

机构信息

Institute of Mathematics and Computer Science - USP, Avenida Trabalhador São-carlense, São Carlos, SP, Brazil.

Indiana University Network Science Institute, Bloomington, Indiana, United States of America.

出版信息

PLoS One. 2024 Jan 19;19(1):e0296088. doi: 10.1371/journal.pone.0296088. eCollection 2024.

Abstract

Many real-world systems give rise to a time series of symbols. The elements in a sequence can be generated by agents walking over a networked space so that whenever a node is visited the corresponding symbol is generated. In many situations the underlying network is hidden, and one aims to recover its original structure and/or properties. For example, when analyzing texts, the underlying network structure generating a particular sequence of words is not available. In this paper, we analyze whether one can recover the underlying local properties of networks generating sequences of symbols for different combinations of random walks and network topologies. We found that the reconstruction performance is influenced by the bias of the agent dynamics. When the walker is biased toward high-degree neighbors, the best performance was obtained for most of the network models and properties. Surprisingly, this same effect is not observed for the clustering coefficient and eccentric, even when large sequences are considered. We also found that the true self-avoiding displayed similar performance as the one preferring highly-connected nodes, with the advantage of yielding competitive performance to recover the clustering coefficient. Our results may have implications for the construction and interpretation of networks generated from sequences.

摘要

许多真实世界的系统都会产生时间序列符号。序列中的元素可以由在网络空间中游走的代理生成,每当访问一个节点时,就会生成相应的符号。在许多情况下,底层网络是隐藏的,目标是恢复其原始结构和/或属性。例如,在分析文本时,生成特定单词序列的底层网络结构不可用。在本文中,我们分析了对于不同的随机游走和网络拓扑组合生成符号序列,是否可以恢复生成这些序列的网络的底层局部属性。我们发现,重构性能受到代理动态的偏差的影响。当漫游者偏向于高度数的邻居时,对于大多数网络模型和属性,都可以获得最佳性能。令人惊讶的是,即使考虑了较大的序列,这种效应也不会出现在聚类系数和偏心度上。我们还发现,真正的自回避与偏好高度连接的节点的表现相似,具有竞争性能的优势,可用于恢复聚类系数。我们的结果可能对从序列生成的网络的构建和解释具有影响。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9f9e/10798465/d9540837800c/pone.0296088.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验