文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

生物网数据集:基于人工智能的外周血涂片图像诊断解决方案。

Bio-net dataset: AI-based diagnostic solutions using peripheral blood smear images.

机构信息

Department of Hematology, University of Health Sciences (UHS), Khayaban-e-Jamia Punjab, Lahore 54600, Pakistan.

MicroNano Lab, Department of Electrical Engineering, Information Technology University (ITU) of Punjab, Ferozepur Road, Lahore 54600, Pakistan.

出版信息

Blood Cells Mol Dis. 2024 Mar;105:102823. doi: 10.1016/j.bcmd.2024.102823. Epub 2024 Jan 4.


DOI:10.1016/j.bcmd.2024.102823
PMID:38241949
Abstract

Peripheral blood smear examination is one of the basic steps in the evaluation of different blood cells. It is a confirmatory step after an automated complete blood count analysis. Manual microscopy is time-consuming and requires professional laboratory expertise. Therefore, the turn-around time for peripheral smear in a health care center is approximately 3-4 hours. To avoid the traditional method of manual counting under the microscope a computerized automation of peripheral blood smear examination has been adopted, which is a challenging task in medical diagnostics. In recent times, deep learning techniques have overcome the challenges associated with human microscopic evaluation of peripheral smears and this has led to reduced cost and precise diagnosis. However, their application can be significantly improved by the availability of annotated datasets. This study presents a large customized annotated blood cell dataset (named the Bio-Net dataset from healthy individuals) and blood cell detection and counting in the peripheral blood smear images. A mini-version of the dataset for specialized WBC-based image processing tasks is also equipped to classify the healthy and mature WBCs in their respective classes. An object detection algorithm called You Only Look Once (YOLO) with a refashion disposition has been trained on the novel dataset to automatically detect and classify blood cells into RBCs, WBCs, and platelets and compare the results with other publicly available datasets to highlight the versatility. In short the introduction of the Bio-Net dataset and AI-powered detection and counting offers a significant potential for advancement in biomedical research for analyzing and understanding biological data.

摘要

外周血涂片检查是评估不同血细胞的基本步骤之一。它是自动化全血细胞计数分析后的确认步骤。手动显微镜检查既耗时又需要专业的实验室专业知识。因此,医疗中心外周涂片的周转时间约为 3-4 小时。为了避免传统的显微镜下手动计数方法,已经采用了计算机化的外周血涂片检查自动化方法,这是医学诊断中的一项具有挑战性的任务。最近,深度学习技术克服了人类对外周涂片显微镜评估相关的挑战,这导致成本降低和精确诊断。然而,通过提供注释数据集,可以显著提高其应用。本研究提出了一个大型定制注释血细胞数据集(命名为来自健康个体的 Bio-Net 数据集),并在外周血涂片图像中进行血细胞检测和计数。还配备了一个用于专门基于 WBC 的图像处理任务的数据集迷你版,以对健康和成熟的 WBC 进行分类,将其归入各自的类别。在新型数据集上训练了一种称为 You Only Look Once (YOLO) 的目标检测算法,并对其进行了重新设计,以便自动检测和分类 RBC、WBC 和血小板,并将结果与其他公开可用数据集进行比较,以突出其多功能性。总之,Bio-Net 数据集和人工智能驱动的检测和计数的引入为分析和理解生物数据的生物医学研究提供了显著的进步潜力。

相似文献

[1]
Bio-net dataset: AI-based diagnostic solutions using peripheral blood smear images.

Blood Cells Mol Dis. 2024-3

[2]
Efficient leukocytes detection and classification in microscopic blood images using convolutional neural network coupled with a dual attention network.

Comput Biol Med. 2024-5

[3]
Machine learning approach of automatic identification and counting of blood cells.

Healthc Technol Lett. 2019-7-17

[4]
Segmentation of white blood cells and comparison of cell morphology by linear and naïve Bayes classifiers.

Biomed Eng Online. 2015-6-30

[5]
A comparative assessment of deep object detection models for blood smear analysis.

Tissue Cell. 2022-6

[6]
Leukemia segmentation and classification: A comprehensive survey.

Comput Biol Med. 2022-11

[7]
Image Processing Approach for Detection of Leukocytes in Peripheral Blood Smears.

J Med Syst. 2019-3-22

[8]
GFNB: Gini index-based Fuzzy Naive Bayes and blast cell segmentation for leukemia detection using multi-cell blood smear images.

Med Biol Eng Comput. 2020-11

[9]
A large multi-focus dataset for white blood cell classification.

Sci Data. 2024-10-9

[10]
Identification and red blood cell automated counting from blood smear images using computer-aided system.

Med Biol Eng Comput. 2017-8-17

引用本文的文献

[1]
Huntington's chorea: emerging fields in therapeutics (Review).

Neurogenetics. 2025-9-6

[2]
Stain-free artificial intelligence-assisted light microscopy for the identification of blood cells in microfluidic flow.

Front Bioinform. 2025-8-14

[3]
A prospective study for the examination of peripheral blood smear samples in pediatric population using artificial intelligence.

Turk J Med Sci. 2025-3-27

[4]
Computer-aided diagnosis of Haematologic disorders detection based on spatial feature learning networks using blood cell images.

Sci Rep. 2025-4-12

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索