文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

Stain-free artificial intelligence-assisted light microscopy for the identification of blood cells in microfluidic flow.

作者信息

Hunt Alexander, Schulze Holger, Samuel Kay, Fisher Robert B, Bachmann Till T

机构信息

Centre for Inflammation Research, Institute for Regeneration and Repair, The University of Edinburgh, Edinburgh, United Kingdom.

Tissues, Cells and Advanced Therapeutics, Scottish National Blood Transfusion Service, NHS National Services Scotland, Jack Copland Centre, Currie, United Kingdom.

出版信息

Front Bioinform. 2025 Aug 14;5:1628724. doi: 10.3389/fbinf.2025.1628724. eCollection 2025.


DOI:10.3389/fbinf.2025.1628724
PMID:40894379
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC12391159/
Abstract

The identification and classification of blood cells are essential for diagnosing and managing various haematological conditions. Haematology analysers typically perform full blood counts but often require follow-up tests such as blood smears. Traditional methods like stained blood smears are laborious and subjective. This study explores the application of artificial neural networks for rapid, automated, and objective classification of major blood cell types from unstained brightfield images. The YOLO v4 object detection architecture was trained on datasets comprising erythrocytes, echinocytes, lymphocytes, monocytes, neutrophils, and platelets imaged using a microfluidic flow system. Binary classification between erythrocytes and echinocytes achieved a network F1 score of 86%. Expanding to four classes (erythrocytes, echinocytes, leukocytes, platelets) yielded a network F1 score of 85%, with some misclassified leukocytes. Further separating leukocytes into lymphocytes, monocytes, and neutrophils, while also increasing the dataset and tweaking model parameters resulted in a network F1 score of 84.1%. Most importantly, the neural network's performance was comparable to that of flow cytometry and haematology analysers when tested on donor samples. These findings demonstrate the potential of artificial intelligence for high-throughput morphological analysis of unstained blood cells, enabling rapid screening and diagnosis. Integrating this approach with microfluidics could streamline conventional techniques and provide a fast automated full blood count with morphological assessment without the requirement for sample handling. Further refinements by training on abnormal cells could facilitate early disease detection and treatment monitoring.

摘要
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f20a/12391159/ccaa7c806d6b/fbinf-05-1628724-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f20a/12391159/024b8f143fec/FBINF_fbinf-2025-1628724_wc_abs.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f20a/12391159/c0f46ef5a2b3/fbinf-05-1628724-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f20a/12391159/4b25876a92d2/fbinf-05-1628724-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f20a/12391159/3201472aa047/fbinf-05-1628724-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f20a/12391159/5ec15040bf08/fbinf-05-1628724-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f20a/12391159/c7e32eba7a7c/fbinf-05-1628724-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f20a/12391159/ccaa7c806d6b/fbinf-05-1628724-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f20a/12391159/024b8f143fec/FBINF_fbinf-2025-1628724_wc_abs.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f20a/12391159/c0f46ef5a2b3/fbinf-05-1628724-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f20a/12391159/4b25876a92d2/fbinf-05-1628724-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f20a/12391159/3201472aa047/fbinf-05-1628724-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f20a/12391159/5ec15040bf08/fbinf-05-1628724-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f20a/12391159/c7e32eba7a7c/fbinf-05-1628724-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f20a/12391159/ccaa7c806d6b/fbinf-05-1628724-g006.jpg

相似文献

[1]
Stain-free artificial intelligence-assisted light microscopy for the identification of blood cells in microfluidic flow.

Front Bioinform. 2025-8-14

[2]
Prescription of Controlled Substances: Benefits and Risks

2025-1

[3]
Leveraging a foundation model zoo for cell similarity search in oncological microscopy across devices.

Front Oncol. 2025-6-18

[4]
Novel application of metabolic imaging of early embryos using a light-sheet on-a-chip device: a proof-of-concept study.

Hum Reprod. 2025-1-1

[5]
Signs and symptoms to determine if a patient presenting in primary care or hospital outpatient settings has COVID-19.

Cochrane Database Syst Rev. 2022-5-20

[6]
Artificial intelligence for diagnosing exudative age-related macular degeneration.

Cochrane Database Syst Rev. 2024-10-17

[7]
Diabetic retinopathy screening through artificial intelligence algorithms: A systematic review.

Surv Ophthalmol. 2024

[8]
Variation within and between digital pathology and light microscopy for the diagnosis of histopathology slides: blinded crossover comparison study.

Health Technol Assess. 2025-7

[9]
Magnetic resonance perfusion for differentiating low-grade from high-grade gliomas at first presentation.

Cochrane Database Syst Rev. 2018-1-22

[10]
The quantity, quality and findings of network meta-analyses evaluating the effectiveness of GLP-1 RAs for weight loss: a scoping review.

Health Technol Assess. 2025-6-25

本文引用的文献

[1]
Bio-net dataset: AI-based diagnostic solutions using peripheral blood smear images.

Blood Cells Mol Dis. 2024-3

[2]
SDE-YOLO: A Novel Method for Blood Cell Detection.

Biomimetics (Basel). 2023-9-1

[3]
AIDMAN: An AI-based object detection system for malaria diagnosis from smartphone thin-blood-smear images.

Patterns (N Y). 2023-8-3

[4]
Artificial intelligence-generated peripheral blood film images using generative adversarial networks and diffusion models.

Am J Hematol. 2023-9

[5]
Artificial intelligence and its applications in digital hematopathology.

Blood Sci. 2022-7-14

[6]
Explainable Transformer-Based Deep Learning Model for the Detection of Malaria Parasites from Blood Cell Images.

Sensors (Basel). 2022-6-8

[7]
Unreliable Automated Complete Blood Count Results: Causes, Recognition, and Resolution.

Ann Lab Med. 2022-9-1

[8]
On evaluation metrics for medical applications of artificial intelligence.

Sci Rep. 2022-4-8

[9]
The Application of Imaging Flow Cytometry for Characterisation and Quantification of Bacterial Phenotypes.

Front Cell Infect Microbiol. 2021

[10]
Review of deep learning: concepts, CNN architectures, challenges, applications, future directions.

J Big Data. 2021

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索