Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA, USA.
Genome Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany.
Nat Methods. 2020 Dec;17(12):1183-1190. doi: 10.1038/s41592-020-00980-w. Epub 2020 Oct 19.
CRISPR-Cas technologies have enabled programmable gene editing in eukaryotes and prokaryotes. However, the leading Cas9 and Cas12a enzymes are limited in their ability to make large deletions. Here, we used the processive nuclease Cas3, together with a minimal Type I-C Cascade-based system for targeted genome engineering in bacteria. DNA cleavage guided by a single CRISPR RNA generated large deletions (7-424 kilobases) in Pseudomonas aeruginosa with near-100% efficiency, while Cas9 yielded small deletions and point mutations. Cas3 generated bidirectional deletions originating from the programmed site, which was exploited to reduce the P. aeruginosa genome by 837 kb (13.5%). Large deletion boundaries were efficiently specified by a homology-directed repair template during editing with Cascade-Cas3, but not Cas9. A transferable 'all-in-one' vector was functional in Escherichia coli, Pseudomonas syringae and Klebsiella pneumoniae, and endogenous CRISPR-Cas use was enhanced with an 'anti-anti-CRISPR' strategy. P. aeruginosa Type I-C Cascade-Cas3 (PaeCas3c) facilitates rapid strain manipulation with applications in synthetic biology, genome minimization and the removal of large genomic regions.
CRISPR-Cas 技术使真核生物和原核生物的可编程基因编辑成为可能。然而,领先的 Cas9 和 Cas12a 酶在进行大片段缺失方面的能力有限。在这里,我们使用了具有连续酶切活性的 Cas3 酶,以及一种最小的基于 I-C 型 Cas 酶的级联系统,用于细菌的靶向基因组工程。由单个 CRISPR RNA 指导的 DNA 切割在铜绿假单胞菌中产生了大片段缺失(7-424kb),效率接近 100%,而 Cas9 则产生小片段缺失和点突变。Cas3 从靶向位点产生双向缺失,这一特性被利用来减少铜绿假单胞菌基因组 837kb(13.5%)。在使用级联-Cas3 进行编辑时,大片段缺失边界可以通过同源定向修复模板有效地指定,但 Cas9 不行。一种可转移的“一体式”载体在大肠杆菌、丁香假单胞菌和肺炎克雷伯菌中具有功能,并且可以通过“反反 CRISPR”策略增强内源性 CRISPR-Cas 的利用。铜绿假单胞菌 I-C 型级联-Cas3(PaeCas3c)可通过快速操纵菌株来促进合成生物学、基因组最小化和去除大片段基因组区域的应用。