Suppr超能文献

一种使用更少的真实标签实现精确神经元分割的半监督流水线方法。

A Semi-supervised Pipeline for Accurate Neuron Segmentation with Fewer Ground Truth Labels.

机构信息

Departments of Biomedical Engineering, Duke University, Durham, North Carolina 27701

Departments of Biomedical Engineering, Duke University, Durham, North Carolina 27701.

出版信息

eNeuro. 2024 Feb 15;11(2). doi: 10.1523/ENEURO.0352-23.2024. Print 2024 Feb.

Abstract

Recent advancements in two-photon calcium imaging have enabled scientists to record the activity of thousands of neurons with cellular resolution. This scope of data collection is crucial to understanding the next generation of neuroscience questions, but analyzing these large recordings requires automated methods for neuron segmentation. Supervised methods for neuron segmentation achieve state of-the-art accuracy and speed but currently require large amounts of manually generated ground truth training labels. We reduced the required number of training labels by designing a semi-supervised pipeline. Our pipeline used neural network ensembling to generate pseudolabels to train a single shallow U-Net. We tested our method on three publicly available datasets and compared our performance to three widely used segmentation methods. Our method outperformed other methods when trained on a small number of ground truth labels and could achieve state-of-the-art accuracy after training on approximately a quarter of the number of ground truth labels as supervised methods. When trained on many ground truth labels, our pipeline attained higher accuracy than that of state-of-the-art methods. Overall, our work will help researchers accurately process large neural recordings while minimizing the time and effort needed to generate manual labels.

摘要

近年来,双光子钙成像技术的发展使得科学家能够以细胞分辨率记录数千个神经元的活动。这种数据采集范围对于理解下一代神经科学问题至关重要,但分析这些大型记录需要用于神经元分割的自动化方法。用于神经元分割的监督方法可以达到最新的准确性和速度,但目前需要大量手动生成的真实标签进行训练。我们通过设计一个半监督流水线来减少所需的训练标签数量。我们的流水线使用神经网络集成来生成伪标签,以训练单个浅层 U-Net。我们在三个公开可用的数据集上测试了我们的方法,并将我们的性能与三种广泛使用的分割方法进行了比较。在使用少量真实标签进行训练时,我们的方法优于其他方法,并且在使用监督方法的真实标签数量的四分之一左右进行训练后,我们的方法可以达到最新的准确性。当用大量真实标签进行训练时,我们的流水线达到了比最新方法更高的准确性。总的来说,我们的工作将帮助研究人员在最小化生成手动标签所需的时间和精力的同时,准确地处理大型神经记录。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f4a3/10880440/962577dca360/eneuro-11-ENEURO.0352-23.2024-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验