Suppr超能文献

使用可穿戴设备从 Mobilise-D 研究中获取信息来估计多种情况下的真实行走速度。

Mobilise-D insights to estimate real-world walking speed in multiple conditions with a wearable device.

机构信息

Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, The Catalyst 3 Science Square, Room 3.27, Newcastle Upon Tyne, NE4 5TG, UK.

Machine Learning and Data Analytics Lab, Department Artificial Intelligence in Biomedical Engineering, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany.

出版信息

Sci Rep. 2024 Jan 19;14(1):1754. doi: 10.1038/s41598-024-51766-5.

Abstract

This study aimed to validate a wearable device's walking speed estimation pipeline, considering complexity, speed, and walking bout duration. The goal was to provide recommendations on the use of wearable devices for real-world mobility analysis. Participants with Parkinson's Disease, Multiple Sclerosis, Proximal Femoral Fracture, Chronic Obstructive Pulmonary Disease, Congestive Heart Failure, and healthy older adults (n = 97) were monitored in the laboratory and the real-world (2.5 h), using a lower back wearable device. Two walking speed estimation pipelines were validated across 4408/1298 (2.5 h/laboratory) detected walking bouts, compared to 4620/1365 bouts detected by a multi-sensor reference system. In the laboratory, the mean absolute error (MAE) and mean relative error (MRE) for walking speed estimation ranged from 0.06 to 0.12 m/s and - 2.1 to 14.4%, with ICCs (Intraclass correlation coefficients) between good (0.79) and excellent (0.91). Real-world MAE ranged from 0.09 to 0.13, MARE from 1.3 to 22.7%, with ICCs indicating moderate (0.57) to good (0.88) agreement. Lower errors were observed for cohorts without major gait impairments, less complex tasks, and longer walking bouts. The analytical pipelines demonstrated moderate to good accuracy in estimating walking speed. Accuracy depended on confounding factors, emphasizing the need for robust technical validation before clinical application.Trial registration: ISRCTN - 12246987.

摘要

本研究旨在验证可穿戴设备的步行速度估计管道,考虑复杂性、速度和步行回合持续时间。目的是为可穿戴设备在现实世界中的移动分析提供使用建议。本研究纳入了帕金森病、多发性硬化症、股骨近端骨折、慢性阻塞性肺疾病、充血性心力衰竭患者以及健康老年人(n=97),他们在实验室和现实世界(2.5 小时)中使用腰部可穿戴设备进行监测。研究比较了两种步行速度估计管道在 4408/1298(2.5 小时/实验室)和 4620/1365 个检测到的步行回合中的表现,这些数据是由多传感器参考系统检测到的。在实验室中,步行速度估计的平均绝对误差(MAE)和平均相对误差(MRE)范围为 0.06 至 0.12 米/秒和-2.1 至 14.4%,其组内相关系数(ICC)在良好(0.79)和优秀(0.91)之间。现实世界中的 MAE 范围为 0.09 至 0.13,MARE 范围为 1.3 至 22.7%,ICC 表明一致性为中度(0.57)至良好(0.88)。在没有严重步态障碍、任务不那么复杂和步行回合更长的队列中,观察到的误差较小。分析管道在估计步行速度方面表现出中等至良好的准确性。准确性取决于混杂因素,强调在临床应用前需要进行稳健的技术验证。试验注册:ISRCTN-12246987。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0cae/10799009/438557782fdc/41598_2024_51766_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验