Suppr超能文献

谱系调控因子 TFAP2C 和 NR5A2 在全能胚胎中作为多能性激活剂发挥作用。

Lineage regulators TFAP2C and NR5A2 function as bipotency activators in totipotent embryos.

机构信息

Center for Stem Cell Biology and Regenerative Medicine, MOE Key Laboratory of Bioinformatics, New Cornerstone Science Laboratory, School of Life Sciences, Tsinghua University, Beijing, China.

Tsinghua-Peking Center for Life Sciences, Beijing, China.

出版信息

Nat Struct Mol Biol. 2024 Jun;31(6):950-963. doi: 10.1038/s41594-023-01199-x. Epub 2024 Jan 19.

Abstract

During the first lineage segregation, a mammalian totipotent embryo differentiates into the inner cell mass (ICM) and trophectoderm (TE). However, how transcription factors (TFs) regulate this earliest cell-fate decision in vivo remains elusive, with their regulomes primarily inferred from cultured cells. Here, we investigated the TF regulomes during the first lineage specification in early mouse embryos, spanning the pre-initiation, initiation, commitment, and maintenance phases. Unexpectedly, we found that TFAP2C, a trophoblast regulator, bound and activated both early TE and inner cell mass (ICM) genes at the totipotent (two- to eight-cell) stages ('bipotency activation'). Tfap2c deficiency caused downregulation of early ICM genes, including Nanog, Nr5a2, and Tdgf1, and early TE genes, including Tfeb and Itgb5, in eight-cell embryos. Transcription defects in both ICM and TE lineages were also found in blastocysts, accompanied by increased apoptosis and reduced cell numbers in ICMs. Upon trophoblast commitment, TFAP2C left early ICM genes but acquired binding to late TE genes in blastocysts, where it co-bound with CDX2, and later to extra-embryonic ectoderm (ExE) genes, where it cooperatively co-occupied with the former ICM regulator SOX2. Finally, 'bipotency activation' in totipotent embryos also applied to a pluripotency regulator NR5A2, which similarly bound and activated both ICM and TE lineage genes at the eight-cell stage. These data reveal a unique transcription circuity of totipotency underpinned by highly adaptable lineage regulators.

摘要

在第一次谱系分离过程中,哺乳动物全能胚胎分化为内细胞团(ICM)和滋养外胚层(TE)。然而,转录因子(TFs)如何在体内调节这一最早的细胞命运决定仍然难以捉摸,其调节网络主要是从培养细胞中推断出来的。在这里,我们研究了早期小鼠胚胎中第一次谱系特化过程中的 TF 调节网络,跨越了起始前、起始、决定和维持阶段。出乎意料的是,我们发现滋养层调节因子 TFAP2C 在全能(二至八细胞)阶段结合并激活早期 TE 和内细胞团(ICM)基因(“双潜能激活”)。Tfap2c 缺陷导致八细胞胚胎中早期 ICM 基因(包括 Nanog、Nr5a2 和 Tdgf1)和早期 TE 基因(包括 Tfeb 和 Itgb5)下调。在囊胚中也发现了 ICM 和 TE 谱系的转录缺陷,伴随着 ICM 中细胞凋亡增加和细胞数量减少。在滋养层决定后,TFAP2C 离开早期 ICM 基因,但在囊胚中获得对晚期 TE 基因的结合,在那里它与 CDX2 共同结合,随后与胚胎外外胚层(ExE)基因结合,在那里它与前 ICM 调节因子 SOX2 合作共同占据。最后,全能胚胎中的“双潜能激活”也适用于多潜能调节因子 NR5A2,它在八细胞阶段同样结合并激活 ICM 和 TE 谱系基因。这些数据揭示了一个由高度适应性谱系调节因子支持的全能性独特转录环。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验