Suppr超能文献

哺乳动物胚胎的自我组织原理。

Principles of Self-Organization of the Mammalian Embryo.

机构信息

Department of Physiology, Development and Neuroscience, University of Cambridge, Downing Street, Cambridge CB2 3EG, UK; Present address: Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA.

Department of Physiology, Development and Neuroscience, University of Cambridge, Downing Street, Cambridge CB2 3EG, UK; Division of Biology and Biological Engineering, California Institute of Technology, 1200 E. California Boulevard, Pasadena, CA 91125, USA.

出版信息

Cell. 2020 Dec 10;183(6):1467-1478. doi: 10.1016/j.cell.2020.11.003.

Abstract

Early embryogenesis is a conserved and self-organized process. In the mammalian embryo, the potential for self-organization is manifested in its extraordinary developmental plasticity, allowing a correctly patterned embryo to arise despite experimental perturbation. The underlying mechanisms enabling such regulative development have long been a topic of study. In this Review, we summarize our current understanding of the self-organizing principles behind the regulative nature of the early mammalian embryo. We argue that geometrical constraints, feedback between mechanical and biochemical factors, and cellular heterogeneity are all required to ensure the developmental plasticity of mammalian embryo development.

摘要

早期胚胎发生是一个保守的、自我组织的过程。在哺乳动物胚胎中,自我组织的潜力表现在其非凡的发育可塑性上,即使受到实验干扰,也能产生正确模式的胚胎。长期以来,支持这种调节发育的潜在机制一直是研究的主题。在这篇综述中,我们总结了我们目前对调节性早期哺乳动物胚胎背后的自我组织原则的理解。我们认为,几何约束、机械和生化因素之间的反馈以及细胞异质性都是确保哺乳动物胚胎发育的发育可塑性所必需的。

相似文献

1
Principles of Self-Organization of the Mammalian Embryo.
Cell. 2020 Dec 10;183(6):1467-1478. doi: 10.1016/j.cell.2020.11.003.
2
Symmetry Breaking in the Mammalian Embryo.
Annu Rev Cell Dev Biol. 2018 Oct 6;34:405-426. doi: 10.1146/annurev-cellbio-100617-062616. Epub 2018 Aug 10.
3
A self-organization framework for symmetry breaking in the mammalian embryo.
Nat Rev Mol Cell Biol. 2013 Jul;14(7):452-9. doi: 10.1038/nrm3602. Epub 2013 Jun 19.
4
Cleavage pattern and emerging asymmetry of the mouse embryo.
Nat Rev Mol Cell Biol. 2005 Dec;6(12):919-28. doi: 10.1038/nrm1782.
5
Axial specification in mice: ten years of advances and controversies.
J Cell Physiol. 2007 Dec;213(3):654-60. doi: 10.1002/jcp.21292.
6
The Regulative Nature of Mammalian Embryos.
Curr Top Dev Biol. 2018;128:105-149. doi: 10.1016/bs.ctdb.2017.10.010. Epub 2017 Dec 2.
7
Common principles of early mammalian embryo self-organisation.
Development. 2020 Jul 22;147(14):dev183079. doi: 10.1242/dev.183079.
8
Pluripotent stem cell models of early mammalian development.
Curr Opin Cell Biol. 2020 Oct;66:89-96. doi: 10.1016/j.ceb.2020.05.010. Epub 2020 Jul 6.
9
Tracing the origin of heterogeneity and symmetry breaking in the early mammalian embryo.
Nat Commun. 2018 May 8;9(1):1819. doi: 10.1038/s41467-018-04155-2.
10
Computational models for the dynamics of early mouse embryogenesis.
Int J Dev Biol. 2019;63(3-4-5):131-142. doi: 10.1387/ijdb.180418gd.

引用本文的文献

2
Molecular factors driving the development of bovine embryos and embryo-like structures.
Anim Reprod. 2025 Aug 14;22(3):e20250056. doi: 10.1590/1984-3143-AR2025-0056. eCollection 2025.
5
Cell and tissue reprogramming: Unlocking a new era in medical drug discovery.
Pharmacol Rev. 2025 Jun 26;77(5):100077. doi: 10.1016/j.pharmr.2025.100077.
10
Generative model for the first cell fate bifurcation in mammalian development.
bioRxiv. 2025 Feb 25:2025.02.24.639895. doi: 10.1101/2025.02.24.639895.

本文引用的文献

1
Evaluating totipotency using criteria of increasing stringency.
Nat Cell Biol. 2021 Jan;23(1):49-60. doi: 10.1038/s41556-020-00609-2. Epub 2021 Jan 8.
2
Keratins are asymmetrically inherited fate determinants in the mammalian embryo.
Nature. 2020 Sep;585(7825):404-409. doi: 10.1038/s41586-020-2647-4. Epub 2020 Aug 26.
4
Autophagy-mediated apoptosis eliminates aneuploid cells in a mouse model of chromosome mosaicism.
Nat Commun. 2020 Jun 11;11(1):2958. doi: 10.1038/s41467-020-16796-3.
5
Self-Organization of Mouse Stem Cells into an Extended Potential Blastoid.
Dev Cell. 2019 Dec 16;51(6):698-712.e8. doi: 10.1016/j.devcel.2019.11.014.
7
A Tug-of-War between Cell Shape and Polarity Controls Division Orientation to Ensure Robust Patterning in the Mouse Blastocyst.
Dev Cell. 2019 Dec 2;51(5):564-574.e6. doi: 10.1016/j.devcel.2019.10.012. Epub 2019 Nov 14.
8
Lumen Expansion Facilitates Epiblast-Primitive Endoderm Fate Specification during Mouse Blastocyst Formation.
Dev Cell. 2019 Dec 16;51(6):684-697.e4. doi: 10.1016/j.devcel.2019.10.011. Epub 2019 Nov 14.
9
Generation of Blastocyst-like Structures from Mouse Embryonic and Adult Cell Cultures.
Cell. 2019 Oct 17;179(3):687-702.e18. doi: 10.1016/j.cell.2019.09.029.
10
TEAD4, YAP1 and WWTR1 prevent the premature onset of pluripotency prior to the 16-cell stage.
Development. 2019 Sep 6;146(17):dev179861. doi: 10.1242/dev.179861.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验