文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

通过改进的向导 RNA 文库克隆实现紧凑型 CRISPR 基因筛选。

Compact CRISPR genetic screens enabled by improved guide RNA library cloning.

机构信息

Laboratory for Genomics Research, San Francisco, CA, 94158, USA.

Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA, 94158, USA.

出版信息

Genome Biol. 2024 Jan 19;25(1):25. doi: 10.1186/s13059-023-03132-3.


DOI:10.1186/s13059-023-03132-3
PMID:38243310
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC10797759/
Abstract

CRISPR genome editing approaches theoretically enable researchers to define the function of each human gene in specific cell types, but challenges remain to efficiently perform genetic perturbations in relevant models. In this work, we develop a library cloning protocol that increases sgRNA uniformity and greatly reduces bias in existing genome-wide libraries. We demonstrate that our libraries can achieve equivalent or better statistical power compared to previously reported screens using an order of magnitude fewer cells. This improved cloning protocol enables genome-scale CRISPR screens in technically challenging cell models and screen formats.

摘要

CRISPR 基因组编辑方法从理论上使研究人员能够在特定细胞类型中定义每个人类基因的功能,但在相关模型中有效地进行遗传干扰仍然存在挑战。在这项工作中,我们开发了一种文库克隆方案,该方案提高了 sgRNA 的均匀性,并大大降低了现有全基因组文库中的偏倚。我们证明,与以前使用数量级更少的细胞报告的筛选相比,我们的文库可以实现等效或更好的统计功效。这种改进的克隆方案使技术上具有挑战性的细胞模型和筛选格式能够进行基因组规模的 CRISPR 筛选。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b3ec/10797759/75d554beae8b/13059_2023_3132_Fig6_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b3ec/10797759/7ea8b6baa084/13059_2023_3132_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b3ec/10797759/7048c986f159/13059_2023_3132_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b3ec/10797759/1f85828d4c6e/13059_2023_3132_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b3ec/10797759/edc32769649a/13059_2023_3132_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b3ec/10797759/82ca2d27faf0/13059_2023_3132_Fig5_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b3ec/10797759/75d554beae8b/13059_2023_3132_Fig6_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b3ec/10797759/7ea8b6baa084/13059_2023_3132_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b3ec/10797759/7048c986f159/13059_2023_3132_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b3ec/10797759/1f85828d4c6e/13059_2023_3132_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b3ec/10797759/edc32769649a/13059_2023_3132_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b3ec/10797759/82ca2d27faf0/13059_2023_3132_Fig5_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b3ec/10797759/75d554beae8b/13059_2023_3132_Fig6_HTML.jpg

相似文献

[1]
Compact CRISPR genetic screens enabled by improved guide RNA library cloning.

Genome Biol. 2024-1-19

[2]
A dual sgRNA library design to probe genetic modifiers using genome-wide CRISPRi screens.

BMC Genomics. 2023-10-30

[3]
Synthesis of an arrayed sgRNA library targeting the human genome.

Sci Rep. 2015-10-8

[4]
Design, execution, and analysis of pooled in vitro CRISPR/Cas9 screens.

FEBS J. 2016-9

[5]
SeqCor: correct the effect of guide RNA sequences in clustered regularly interspaced short palindromic repeats/Cas9 screening by machine learning algorithm.

J Genet Genomics. 2020-11-20

[6]
Optimized minimal genome-wide human sgRNA library.

Sci Rep. 2023-7-18

[7]
Genome-scale CRISPR pooled screens.

Anal Biochem. 2017-9-1

[8]
Functional Genomics via CRISPR-Cas.

J Mol Biol. 2018-6-28

[9]
Practical Considerations for Using Pooled Lentiviral CRISPR Libraries.

Curr Protoc Mol Biol. 2016-7-1

[10]
Screening Regulatory Element Function with CRISPR/Cas9-based Epigenome Editing.

Methods Mol Biol. 2018

引用本文的文献

[1]
knockout hiPSC model enables high lentiviral transduction efficiency in myeloid cell types.

Front Genet. 2025-4-7

[2]
Optimizing Transcribed CRISPR-Cas9 Single-Guide RNA Libraries for Improved Uniformity and Affordability.

bioRxiv. 2025-3-24

[3]
PRODE recovers essential and context-essential genes through neighborhood-informed scores.

Genome Biol. 2025-2-28

[4]
Cullin-5 deficiency promotes chimeric antigen receptor T cell effector functions potentially via the modulation of JAK/STAT signaling pathway.

Nat Commun. 2024-12-10

本文引用的文献

[1]
A genome-scale CRISPR knock-out screen in chronic myeloid leukemia identifies novel drug resistance mechanisms along with intrinsic apoptosis and MAPK signaling.

Cancer Med. 2020-9

[2]
High-resolution genome-wide mapping of chromosome-arm-scale truncations induced by CRISPR-Cas9 editing.

Nat Genet. 2024-7

[3]
Mitigation of chromosome loss in clinical CRISPR-Cas9-engineered T cells.

Cell. 2023-10-12

[4]
High-content CRISPR screening.

Nat Rev Methods Primers. 2022

[5]
Maximizing CRISPRi efficacy and accessibility with dual-sgRNA libraries and optimal effectors.

Elife. 2022-12-28

[6]
DAVID: a web server for functional enrichment analysis and functional annotation of gene lists (2021 update).

Nucleic Acids Res. 2022-7-5

[7]
clusterProfiler 4.0: A universal enrichment tool for interpreting omics data.

Innovation (Camb). 2021-7-1

[8]
A new era in functional genomics screens.

Nat Rev Genet. 2022-2

[9]
Digital Quantification of Chemical Oligonucleotide Synthesis Errors.

Clin Chem. 2021-10-1

[10]
Genome-wide CRISPR/Cas9 screening in human iPS derived cardiomyocytes uncovers novel mediators of doxorubicin cardiotoxicity.

Sci Rep. 2021-7-6

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索