Suppr超能文献

全基因组规模的CRISPR混合筛选

Genome-scale CRISPR pooled screens.

作者信息

Sanjana Neville E

机构信息

New York Genome Center, New York, NY 10013, USA; Center for Genomics and Systems Biology, Department of Biology, New York University, New York, NY 10012, USA.

出版信息

Anal Biochem. 2017 Sep 1;532:95-99. doi: 10.1016/j.ab.2016.05.014. Epub 2016 Jun 1.

Abstract

Genome editing technologies such as clustered regularly interspaced short palindromic repeats (CRISPR) systems have ushered in a new era of targeted DNA manipulation. The easy programmability of CRISPR using short oligonucleotides enables rapid synthesis of large-scale libraries for functional genetic screens. Here we present fundamental concepts and methods for pooled CRISPR screens and review biological results from recent genome-scale loss-of-function and gain-of-function screens. We also discuss new frontiers in pooled screens, including novel effector domains for functional screens and applications in the noncoding genome.

摘要

诸如成簇规律间隔短回文重复序列(CRISPR)系统等基因组编辑技术开创了靶向DNA操纵的新时代。CRISPR利用短寡核苷酸实现的易于编程性,使得能够快速合成用于功能基因筛选的大规模文库。在此,我们介绍了汇集式CRISPR筛选的基本概念和方法,并回顾了近期全基因组规模功能丧失和功能获得筛选的生物学结果。我们还讨论了汇集式筛选的新前沿,包括用于功能筛选的新型效应结构域以及在非编码基因组中的应用。

相似文献

1
Genome-scale CRISPR pooled screens.
Anal Biochem. 2017 Sep 1;532:95-99. doi: 10.1016/j.ab.2016.05.014. Epub 2016 Jun 1.
2
High-Throughput Approaches to Pinpoint Function within the Noncoding Genome.
Mol Cell. 2017 Oct 5;68(1):44-59. doi: 10.1016/j.molcel.2017.09.017.
3
CRISPR/Cas9-Based Gene Dropout Screens.
Methods Mol Biol. 2019;1881:185-200. doi: 10.1007/978-1-4939-8876-1_15.
4
CRISPR-Based Technologies: Impact of RNA-Targeting Systems.
Mol Cell. 2018 Nov 1;72(3):404-412. doi: 10.1016/j.molcel.2018.09.018.
5
CRISPR/Cas9 for Human Genome Engineering and Disease Research.
Annu Rev Genomics Hum Genet. 2016 Aug 31;17:131-54. doi: 10.1146/annurev-genom-083115-022258. Epub 2016 May 23.
6
CRISPR-Cas9 in genome editing: Its function and medical applications.
J Cell Physiol. 2019 May;234(5):5751-5761. doi: 10.1002/jcp.27476. Epub 2018 Oct 26.
7
Genome Editing: CRISPR-Cas9.
Methods Mol Biol. 2018;1775:119-132. doi: 10.1007/978-1-4939-7804-5_11.
8
CRISPR/Cas9 in Genome Editing and Beyond.
Annu Rev Biochem. 2016 Jun 2;85:227-64. doi: 10.1146/annurev-biochem-060815-014607. Epub 2016 Apr 25.
9
Conditional Control of CRISPR/Cas9 Function.
Angew Chem Int Ed Engl. 2016 Apr 25;55(18):5394-9. doi: 10.1002/anie.201511441. Epub 2016 Mar 21.
10
Gene Manipulation Using Fusion Guide RNAs for Cas9 and Cas12a.
Methods Mol Biol. 2021;2162:185-193. doi: 10.1007/978-1-0716-0687-2_10.

引用本文的文献

1
A model for accurate quantification of CRISPR effects in pooled FACS screens.
bioRxiv. 2024 Jun 18:2024.06.17.599448. doi: 10.1101/2024.06.17.599448.
2
Non-linear transcriptional responses to gradual modulation of transcription factor dosage.
bioRxiv. 2024 Aug 6:2024.03.01.582837. doi: 10.1101/2024.03.01.582837.
3
Using Genomics to Identify Novel Therapeutic Targets for Aortic Disease.
Arterioscler Thromb Vasc Biol. 2024 Feb;44(2):334-351. doi: 10.1161/ATVBAHA.123.318771. Epub 2023 Dec 14.
4
Involvement of lncRNAs in cancer cells migration, invasion and metastasis: cytoskeleton and ECM crosstalk.
J Exp Clin Cancer Res. 2023 Jul 18;42(1):173. doi: 10.1186/s13046-023-02741-x.
6
Bridging Glycomics and Genomics: New Uses of Functional Genetics in the Study of Cellular Glycosylation.
Front Mol Biosci. 2022 Jun 16;9:934584. doi: 10.3389/fmolb.2022.934584. eCollection 2022.
7
CRISPR RNA-guided integrase enables high-efficiency targeted genome engineering in Agrobacterium tumefaciens.
Plant Biotechnol J. 2022 Oct;20(10):1916-1927. doi: 10.1111/pbi.13872. Epub 2022 Jul 11.
8
Governance Choices of Genome Editing Patents.
Front Polit Sci. 2021;3. doi: 10.3389/fpos.2021.745898. Epub 2021 Sep 6.
9
The use of base editing technology to characterize single nucleotide variants.
Comput Struct Biotechnol J. 2022 Mar 31;20:1670-1680. doi: 10.1016/j.csbj.2022.03.031. eCollection 2022.
10
CRISPR Technology in Cancer Diagnosis and Treatment: Opportunities and Challenges.
Biochem Genet. 2022 Oct;60(5):1446-1470. doi: 10.1007/s10528-022-10193-9. Epub 2022 Jan 29.

本文引用的文献

1
CRISPR knockout screening outperforms shRNA and CRISPRi in identifying essential genes.
Nat Biotechnol. 2016 Jun;34(6):631-3. doi: 10.1038/nbt.3536. Epub 2016 Apr 25.
2
Genome-wide CRISPR-Cas9 Screens Reveal Loss of Redundancy between PKMYT1 and WEE1 in Glioblastoma Stem-like Cells.
Cell Rep. 2015 Dec 22;13(11):2425-2439. doi: 10.1016/j.celrep.2015.11.021. Epub 2015 Dec 7.
3
High-Resolution CRISPR Screens Reveal Fitness Genes and Genotype-Specific Cancer Liabilities.
Cell. 2015 Dec 3;163(6):1515-26. doi: 10.1016/j.cell.2015.11.015. Epub 2015 Nov 25.
5
Highly specific epigenome editing by CRISPR-Cas9 repressors for silencing of distal regulatory elements.
Nat Methods. 2015 Dec;12(12):1143-9. doi: 10.1038/nmeth.3630. Epub 2015 Oct 26.
6
Identification and characterization of essential genes in the human genome.
Science. 2015 Nov 27;350(6264):1096-101. doi: 10.1126/science.aac7041. Epub 2015 Oct 15.
7
BCL11A enhancer dissection by Cas9-mediated in situ saturating mutagenesis.
Nature. 2015 Nov 12;527(7577):192-7. doi: 10.1038/nature15521. Epub 2015 Sep 16.
9
Morphological Profiles of RNAi-Induced Gene Knockdown Are Highly Reproducible but Dominated by Seed Effects.
PLoS One. 2015 Jul 21;10(7):e0131370. doi: 10.1371/journal.pone.0131370. eCollection 2015.
10
A CRISPR-Based Screen Identifies Genes Essential for West-Nile-Virus-Induced Cell Death.
Cell Rep. 2015 Jul 28;12(4):673-83. doi: 10.1016/j.celrep.2015.06.049. Epub 2015 Jul 16.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验