Suppr超能文献

预测供肾切术后的新基础肾小球滤过率(NBGFR):基于分肾功能(SRF)公式的验证。

Predicting new-baseline glomerular filtration rate (NBGFR) after donor nephrectomy: validation of a split renal function (SRF)-based formula.

机构信息

Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore.

Yong Loo Lin School of Medicine, National University Singapore, Singapore, Singapore.

出版信息

World J Urol. 2024 Jan 20;42(1):50. doi: 10.1007/s00345-023-04759-4.

Abstract

BACKGROUND

Accurate prediction of post-donor nephrectomy (DN) glomerular filtration rate is potentially useful for evaluating and counselling living kidney donors. Currently, there are limited tools to evaluate post-operative new-baseline glomerular filtration rate (NBGFR) in kidney donors. We aim to validate a conceptually simple formula based on split renal function (SRF) previously developed for radical nephrectomy patients.

METHODS

Eighty-three consecutive patients who underwent DN from 2010 to 2016 were included. Pre-operative CT imaging and functional data including pre-DN baseline Global GFR (108.2 ± 13.2 mL/min/1.73m) were included. Observed NBGFR was defined as the latest eGFR 3-12 months post-DN. SRF, defined as volume of the contralateral non-resected kidney normalised by total volume of kidneys, was determined from pre-operative cross-sectional imaging (49.2 ± 2.36%). The equation derived from Rathi et al. is as detailed: Predicted NBGFR = 1.24 × (Global GFR Pre-DN) x (SRF).

RESULTS

The relationship between predicted NBGFR (66.0 ± 8.29 mL/min/1.73m) and observed NBGFR (74.9 ± 16.4 mL/min/1.73m) was assessed by evaluating correlation coefficients, bias, precision, accuracy, and concordance. The new SRF-based formula for NBGFR prediction correlated strongly with observed post-operative NBGFR (Pearson's r = 0.729) demonstrating minimal bias (median difference = 7.190 mL/min/1.73m) with good accuracy (96.4% within ± 30%, 62.7% within ± 15%) and precision (IQR of bias =  - 0.094 to 16.227).

CONCLUSION

The SRF-based formula was also able to accurately discriminate all but one patient to an NBGFR of > 45 mL/min/1.73m. We utilised the newly developed SRF-based formula for predicting NBGFR in a living kidney donor population. Counselling of donor post-operative renal outcomes may then be optimised pre-operatively.

摘要

背景

准确预测活体供肾者肾切除术后(DN)肾小球滤过率(GFR)可能有助于评估和咨询活体供肾者。目前,评估肾切除术后新基线 GFR(NBGFR)的工具有限。我们旨在验证一种基于分肾功能(SRF)的概念简单的公式,该公式最初是为根治性肾切除术患者开发的。

方法

纳入 2010 年至 2016 年间接受 DN 的 83 例连续患者。包括术前 CT 成像和功能数据,包括术前基线全 GFR(108.2±13.2mL/min/1.73m)。观察到的 NBGFR 定义为 DN 后 3-12 个月的最新 eGFR。SRF 定义为对侧未切除肾脏的体积除以肾脏总体积,由术前横断面成像(49.2±2.36%)确定。Rathi 等人推导的公式如下:预测 NBGFR=1.24×(术前全 GFR)×(SRF)。

结果

通过评估相关系数、偏差、精度、准确性和一致性来评估预测的 NBGFR(66.0±8.29mL/min/1.73m)与观察到的 NBGFR(74.9±16.4mL/min/1.73m)之间的关系。新的基于 SRF 的 NBGFR 预测公式与术后观察到的 NBGFR 密切相关(Pearson's r=0.729),显示出最小的偏差(中位数差异=7.190mL/min/1.73m),具有较高的准确性(96.4%在±30%范围内,62.7%在±15%范围内)和精度(偏差的 IQR=-0.094 至 16.227)。

结论

该基于 SRF 的公式还能够准确区分除 1 例以外的所有患者的 NBGFR>45mL/min/1.73m。我们在活体供肾者人群中使用新开发的基于 SRF 的公式来预测 NBGFR。然后,可以在术前优化供者术后肾脏结局的咨询。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验