Suppr超能文献

LASSO 回归显示组氨酸和鞘氨醇 1 磷酸与脓毒症死亡率和内皮损伤均有关联。

LASSO regression shows histidine and sphingosine 1 phosphate are linked to both sepsis mortality and endothelial damage.

机构信息

CAG Center for Endotheliomics, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark.

Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark.

出版信息

Eur J Med Res. 2024 Jan 20;29(1):71. doi: 10.1186/s40001-023-01612-7.

Abstract

Sepsis is a major cause of death worldwide, with a mortality rate that has remained stubbornly high. The current gold standard of risk stratifying sepsis patients provides limited mechanistic insight for therapeutic targeting. An improved ability to predict sepsis mortality and to understand the risk factors would allow better treatment targeting. Sepsis causes metabolic dysregulation in patients; therefore, metabolomics offers a promising tool to study sepsis. It is also known that that in sepsis endothelial cells affecting their function regarding blood clotting and vascular permeability. We integrated metabolomics data from patients admitted to an intensive care unit for sepsis, with commonly collected clinical features of their cases and two measures of endothelial function relevant to blood vessel function, platelet endothelial cell adhesion molecule and soluble thrombomodulin concentrations in plasma. We used least absolute shrinkage and selection operator penalized regression, and pathway enrichment analysis to identify features most able to predict 30-day survival. The features important to sepsis survival include carnitines, and amino acids. Endothelial proteins in plasma also predict 30-day mortality and the levels of these proteins also correlate with a somewhat overlapping set of metabolites. Overall metabolic dysregulation, particularly in endothelial cells, may be a contributory factor to sepsis response. By exploring sepsis metabolomics data in conjunction with clinical features and endothelial proteins we have gained a better understanding of sepsis risk factors.

摘要

脓毒症是全球范围内主要的死亡原因,其死亡率一直居高不下。目前用于分层脓毒症患者风险的金标准提供了针对治疗的有限的机制见解。更好地预测脓毒症死亡率和了解风险因素的能力将允许更好的治疗目标定位。脓毒症导致患者代谢失调;因此,代谢组学提供了一种研究脓毒症的有前途的工具。众所周知,内皮细胞在脓毒症中会影响其血液凝固和血管通透性的功能。我们整合了来自重症监护病房脓毒症患者的代谢组学数据,以及与血管功能相关的两个内皮功能的常用临床特征测量值,即血小板内皮细胞黏附分子和血浆可溶性血栓调节蛋白浓度。我们使用最小绝对收缩和选择算子惩罚回归以及途径富集分析来识别最能预测 30 天存活率的特征。对脓毒症存活重要的特征包括肉碱和氨基酸。血浆中的内皮蛋白也预测 30 天死亡率,这些蛋白质的水平也与一组略有重叠的代谢物相关。整体代谢失调,特别是内皮细胞,可能是脓毒症反应的一个促成因素。通过结合临床特征和内皮蛋白探索脓毒症代谢组学数据,我们对脓毒症的风险因素有了更好的了解。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/be10/10799523/ac53e707ea26/40001_2023_1612_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验