文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

decoupleR:用于从组学数据推断生物活性的计算方法集合。

decoupleR: ensemble of computational methods to infer biological activities from omics data.

作者信息

Badia-I-Mompel Pau, Vélez Santiago Jesús, Braunger Jana, Geiss Celina, Dimitrov Daniel, Müller-Dott Sophia, Taus Petr, Dugourd Aurelien, Holland Christian H, Ramirez Flores Ricardo O, Saez-Rodriguez Julio

机构信息

Heidelberg University, Faculty of Medicine, and Heidelberg University Hospital, Institute for Computational Biomedicine, BioQuant, Heidelberg 69120, Germany.

Institute for Computational Biomedicine, Heidelberg University Hospital, BioQuant, Heidelberg 69120, Germany.

出版信息

Bioinform Adv. 2022 Mar 8;2(1):vbac016. doi: 10.1093/bioadv/vbac016. eCollection 2022.


DOI:10.1093/bioadv/vbac016
PMID:36699385
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC9710656/
Abstract

SUMMARY: Many methods allow us to extract biological activities from omics data using information from prior knowledge resources, reducing the dimensionality for increased statistical power and better interpretability. Here, we present decoupleR, a Bioconductor and Python package containing computational methods to extract these activities within a unified framework. decoupleR allows us to flexibly run any method with a given resource, including methods that leverage mode of regulation and weights of interactions, which are not present in other frameworks. Moreover, it leverages OmniPath, a meta-resource comprising over 100 databases of prior knowledge. Using decoupleR, we evaluated the performance of methods on transcriptomic and phospho-proteomic perturbation experiments. Our findings suggest that simple linear models and the consensus score across top methods perform better than other methods at predicting perturbed regulators. AVAILABILITY AND IMPLEMENTATION: decoupleR's open-source code is available in Bioconductor (https://www.bioconductor.org/packages/release/bioc/html/decoupleR.html) for R and in GitHub (https://github.com/saezlab/decoupler-py) for Python. The code to reproduce the results is in GitHub (https://github.com/saezlab/decoupleR_manuscript) and the data in Zenodo (https://zenodo.org/record/5645208). SUPPLEMENTARY INFORMATION: Supplementary data are available at online.

摘要

摘要:许多方法可让我们利用先验知识资源中的信息从组学数据中提取生物学活性,降低维度以提高统计功效和增强可解释性。在此,我们展示了decoupleR,这是一个包含计算方法的Bioconductor和Python软件包,用于在统一框架内提取这些活性。decoupleR使我们能够灵活地使用给定资源运行任何方法,包括利用调控模式和相互作用权重的方法,而其他框架中不存在这些方法。此外,它利用了OmniPath,这是一个包含100多个先验知识数据库的元资源。使用decoupleR,我们评估了这些方法在转录组学和磷酸化蛋白质组学扰动实验中的性能。我们的研究结果表明,简单线性模型和顶级方法的共识评分在预测受扰动的调节因子方面比其他方法表现更好。 可用性和实现:decoupleR的开源代码可在Bioconductor(https://www.bioconductor.org/packages/release/bioc/html/decoupleR.html)上获取用于R,在GitHub(https://github.com/saezlab/decoupler-py)上获取用于Python。重现结果的代码在GitHub(https://github.com/saezlab/decoupleR_manuscript)中,数据在Zenodo(https://zenodo.org/record/5645208)中。 补充信息:补充数据可在网上获取。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/51cc/9710656/3bb517ba62d8/vbac016f1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/51cc/9710656/3bb517ba62d8/vbac016f1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/51cc/9710656/3bb517ba62d8/vbac016f1.jpg

相似文献

[1]
decoupleR: ensemble of computational methods to infer biological activities from omics data.

Bioinform Adv. 2022-3-8

[2]
PrInCE: an R/Bioconductor package for protein-protein interaction network inference from co-fractionation mass spectrometry data.

Bioinformatics. 2021-9-9

[3]
Bringing data from curated pathway resources to Cytoscape with OmniPath.

Bioinformatics. 2020-4-15

[4]
InterMineR: an R package for InterMine databases.

Bioinformatics. 2019-9-1

[5]
cytomapper: an R/Bioconductor package for visualization of highly multiplexed imaging data.

Bioinformatics. 2021-4-5

[6]
MultiBaC: an R package to remove batch effects in multi-omic experiments.

Bioinformatics. 2022-4-28

[7]
ReactomeGSA: new features to simplify public data reuse.

Bioinformatics. 2024-6-3

[8]
Bipartite graph-based approach for clustering of cell lines by gene expression-drug response associations.

Bioinformatics. 2021-9-9

[9]
UMI4Cats: an R package to analyze chromatin contact profiles obtained by UMI-4C.

Bioinformatics. 2021-11-18

[10]
MoleculeExperiment enables consistent infrastructure for molecule-resolved spatial omics data in bioconductor.

Bioinformatics. 2023-9-2

引用本文的文献

[1]
Muscle-driven spinal cord histological and transcriptomic alterations in a myotonic dystrophy mouse model: insights into neuropathy.

Brain Commun. 2025-8-25

[2]
Transposable element dynamics in glioblastoma stem cells: insights from locus-specific quantification.

Mob DNA. 2025-9-2

[3]
SPEX: A modular end-to-end platform for high-plex tissue spatial omics analysis.

Gigascience. 2025-1-6

[4]
Intercellular signaling reinforces single-cell level phenotypic transitions and facilitates robust re-equilibrium of heterogeneous cancer cell populations.

Cell Commun Signal. 2025-8-28

[5]
NcROP2 deletion reduces virulence by altering parasite stage differentiation and hijacking host immune response.

Front Immunol. 2025-8-12

[6]
Single-cell RNA sequencing reveals different cellular states in malignant cells and the tumor microenvironment in primary and metastatic ER-positive breast cancer.

NPJ Breast Cancer. 2025-8-26

[7]
Targeting STING to disrupt macrophage-mediated adhesion in encapsulating peritoneal sclerosis.

Commun Biol. 2025-8-23

[8]
Inhibiting the alarmin-driven hematopoiesis-stromal cell crosstalk in primary myelofibrosis ameliorates bone marrow fibrosis.

Hemasphere. 2025-8-14

[9]
Multimodal spatial transcriptomic characterization of mouse kidney injury and repair.

Nat Commun. 2025-8-14

[10]
PIT-1/SF-1-positive pituitary tumors in patients with acromegaly: transcriptomic perspective.

Acta Neuropathol Commun. 2025-8-14

本文引用的文献

[1]
Integrated intra- and intercellular signaling knowledge for multicellular omics analysis.

Mol Syst Biol. 2021-3

[2]
Improved detection of tumor suppressor events in single-cell RNA-Seq data.

NPJ Genom Med. 2020-10-7

[3]
Footprint-based functional analysis of multiomic data.

Curr Opin Syst Biol. 2019-6

[4]
Robustness and applicability of transcription factor and pathway analysis tools on single-cell RNA-seq data.

Genome Biol. 2020-2-12

[5]
Benchmark and integration of resources for the estimation of human transcription factor activities.

Genome Res. 2019-7-24

[6]
SCENIC: single-cell regulatory network inference and clustering.

Nat Methods. 2017-11

[7]
Benchmarking substrate-based kinase activity inference using phosphoproteomic data.

Bioinformatics. 2017-6-15

[8]
Combining multiple tools outperforms individual methods in gene set enrichment analyses.

Bioinformatics. 2017-2-1

[9]
Functional characterization of somatic mutations in cancer using network-based inference of protein activity.

Nat Genet. 2016-8

[10]
Bioconductor's EnrichmentBrowser: seamless navigation through combined results of set- & network-based enrichment analysis.

BMC Bioinformatics. 2016-1-20

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索