Suppr超能文献

人工智能在婴儿运动分类中的应用:对足月儿和早产儿的可靠性与有效性研究

Application of Artificial Intelligence in Infant Movement Classification: A Reliability and Validity Study in Infants Who Were Full-Term and Preterm.

作者信息

Lin Shiang-Chin, Chandra Erick, Tsao Po Nien, Liao Wei-Chih, Chen Wei-J, Yen Ting-An, Hsu Jane Yung-Jen, Jeng Suh-Fang

机构信息

School and Graduate Institute of Physical Therapy, National Taiwan University College of Medicine, Taipei, Taiwan.

Department of Computer Science, National Taiwan University College of Electric Engineering and Computer Science, Taipei, Taiwan.

出版信息

Phys Ther. 2024 Feb 1;104(2). doi: 10.1093/ptj/pzad176.

Abstract

OBJECTIVE

Preterm infants are at high risk of neuromotor disorders. Recent advances in digital technology and machine learning algorithms have enabled the tracking and recognition of anatomical key points of the human body. It remains unclear whether the proposed pose estimation model and the skeleton-based action recognition model for adult movement classification are applicable and accurate for infant motor assessment. Therefore, this study aimed to develop and validate an artificial intelligence (AI) model framework for movement recognition in full-term and preterm infants.

METHODS

This observational study prospectively assessed 30 full-term infants and 54 preterm infants using the Alberta Infant Motor Scale (58 movements) from 4 to 18 months of age with their movements recorded by 5 video cameras simultaneously in a standardized clinical setup. The movement videos were annotated for the start/end times and presence of movements by 3 pediatric physical therapists. The annotated videos were used for the development and testing of an AI algorithm that consisted of a 17-point human pose estimation model and a skeleton-based action recognition model.

RESULTS

The infants contributed 153 sessions of Alberta Infant Motor Scale assessment that yielded 13,139 videos of movements for data processing. The intra and interrater reliabilities for movement annotation of videos by the therapists showed high agreements (88%-100%). Thirty-one of the 58 movements were selected for machine learning because of sufficient data samples and developmental significance. Using the annotated results as the standards, the AI algorithm showed satisfactory agreement in classifying the 31 movements (accuracy = 0.91, recall = 0.91, precision = 0.91, and F1 score = 0.91).

CONCLUSION

The AI algorithm was accurate in classifying 31 movements in full-term and preterm infants from 4 to 18 months of age in a standardized clinical setup.

IMPACT

The findings provide the basis for future refinement and validation of the algorithm on home videos to be a remote infant movement assessment.

摘要

目的

早产儿患神经运动障碍的风险很高。数字技术和机器学习算法的最新进展使得人体解剖关键点的跟踪和识别成为可能。目前尚不清楚所提出的用于成人运动分类的姿势估计模型和基于骨骼的动作识别模型是否适用于婴儿运动评估以及是否准确。因此,本研究旨在开发并验证一个用于足月儿和早产儿运动识别的人工智能(AI)模型框架。

方法

这项观察性研究前瞻性地评估了30名足月儿和54名早产儿,使用艾伯塔婴儿运动量表(58项动作),在4至18个月龄时,通过5台摄像机在标准化临床环境中同时记录他们的动作。3名儿科物理治疗师对运动视频的开始/结束时间和动作出现情况进行注释。带注释的视频用于开发和测试一种AI算法,该算法由一个17点人体姿势估计模型和一个基于骨骼的动作识别模型组成。

结果

婴儿们贡献了153次艾伯塔婴儿运动量表评估,产生了13139段运动视频用于数据处理。治疗师对视频运动注释的评分者内和评分者间信度显示出高度一致性(88%-100%)。由于有足够的数据样本和发育意义,58项动作中的31项被选用于机器学习。以注释结果为标准,AI算法在对这31项动作进行分类时显示出令人满意的一致性(准确率=0.91,召回率=0.91,精确率=0.91,F1分数=0.91)。

结论

在标准化临床环境中,AI算法在对4至18个月龄的足月儿和早产儿的31项动作进行分类时是准确的。

影响

这些发现为该算法未来在家庭视频上的优化和验证提供了基础,以便进行远程婴儿运动评估。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验