文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

用于增强伤口愈合过程的新兴活性氧调节技术。

Emerging ROS-Modulating Technologies for Augmentation of the Wound Healing Process.

作者信息

Polaka Suryanarayana, Katare Pratik, Pawar Bhakti, Vasdev Nupur, Gupta Tanisha, Rajpoot Kuldeep, Sengupta Pinaki, Tekade Rakesh Kumar

机构信息

National Institute of Pharmaceutical Education and Research-Ahmedabad (NIPER-A), An Institute of National Importance, Government of India, Department of Pharmaceuticals, Ministry of Chemicals and Fertilizers, Palaj, Opposite Air Force Station, Gandhinagar 382355, Gujarat, India.

出版信息

ACS Omega. 2022 Aug 24;7(35):30657-30672. doi: 10.1021/acsomega.2c02675. eCollection 2022 Sep 6.


DOI:10.1021/acsomega.2c02675
PMID:36092613
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC9453976/
Abstract

Reactive oxygen species (ROS) is considered a double-edged sword. The slightly elevated level of ROS helps in wound healing by inhibiting microbial infection. In contrast, excessive ROS levels in the wound site show deleterious effects on wound healing by extending the inflammation phase. Understanding the ROS-mediated molecular and biomolecular mechanisms and their effect on cellular homeostasis and inflammation thus substantially improves the possibility of exogenously augmenting and manipulating wound healing with the emerging antioxidant therapeutics. This review comprehensively delves into the relationship between ROS and critical phases of wound healing and the processes underpinning antioxidant therapies. The manuscript also discusses cutting-edge antioxidant therapeutics that act via ROS scavenging to enhance chronic wound healing.

摘要

活性氧(ROS)被认为是一把双刃剑。ROS水平的轻微升高通过抑制微生物感染有助于伤口愈合。相反,伤口部位ROS水平过高会延长炎症期,对伤口愈合产生有害影响。因此,了解ROS介导的分子和生物分子机制及其对细胞稳态和炎症的影响,极大地提高了利用新兴抗氧化疗法外源性增强和调控伤口愈合的可能性。本综述全面深入地探讨了ROS与伤口愈合关键阶段之间的关系以及抗氧化疗法的基础过程。本文还讨论了通过清除ROS来促进慢性伤口愈合的前沿抗氧化疗法。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c71b/9453976/b36f4083aa4c/ao2c02675_0007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c71b/9453976/02d66aa5e05d/ao2c02675_0001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c71b/9453976/6ba954bdfd42/ao2c02675_0002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c71b/9453976/5da5ff50c616/ao2c02675_0003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c71b/9453976/46443c07e026/ao2c02675_0004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c71b/9453976/7527a295d2a8/ao2c02675_0005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c71b/9453976/d7f31226eb95/ao2c02675_0006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c71b/9453976/b36f4083aa4c/ao2c02675_0007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c71b/9453976/02d66aa5e05d/ao2c02675_0001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c71b/9453976/6ba954bdfd42/ao2c02675_0002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c71b/9453976/5da5ff50c616/ao2c02675_0003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c71b/9453976/46443c07e026/ao2c02675_0004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c71b/9453976/7527a295d2a8/ao2c02675_0005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c71b/9453976/d7f31226eb95/ao2c02675_0006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c71b/9453976/b36f4083aa4c/ao2c02675_0007.jpg

相似文献

[1]
Emerging ROS-Modulating Technologies for Augmentation of the Wound Healing Process.

ACS Omega. 2022-8-24

[2]
Recent advances in reactive oxygen species scavenging nanomaterials for wound healing.

Exploration (Beijing). 2024-1-17

[3]
Reactive oxygen species (ROS) and wound healing: the functional role of ROS and emerging ROS-modulating technologies for augmentation of the healing process.

Int Wound J. 2015-12-21

[4]
In situ forming and reactive oxygen species-scavenging gelatin hydrogels for enhancing wound healing efficacy.

Acta Biomater. 2020-2

[5]
ROS-scavenging materials for skin wound healing: advancements and applications.

Front Bioeng Biotechnol. 2023-12-12

[6]
Influence of Reactive Oxygen Species on Wound Healing and Tissue Regeneration in Periodontal and Peri-Implant Tissues in Diabetic Patients.

Antioxidants (Basel). 2023-9-21

[7]
Reactive oxygen species (ROS)--a family of fate deciding molecules pivotal in constructive inflammation and wound healing.

Eur Cell Mater. 2012-9-24

[8]
Ceria nanocrystals decorated mesoporous silica nanoparticle based ROS-scavenging tissue adhesive for highly efficient regenerative wound healing.

Biomaterials. 2017-10-12

[9]
Bilirubin in wound healing: A double-edged sword.

Cell Biochem Funct. 2023-12

[10]
ROS-scavenging hydrogel to promote healing of bacteria infected diabetic wounds.

Biomaterials. 2020-11

引用本文的文献

[1]
Development of Bioactive Cotton, Wool, and Silk Fabrics Functionalized with L. for Healthcare and Medical Applications: An In Vivo Study.

Pharmaceutics. 2025-6-30

[2]
Bioactive Compound-Fortified Nanomedicine in the Modulation of Reactive Oxygen Species and Enhancement of the Wound Healing Process: A Review.

Pharmaceutics. 2025-6-30

[3]
Stimuli-responsive nanozymes for wound healing: From design strategies to therapeutic advances.

Mater Today Bio. 2025-7-2

[4]
Photodynamically tunable ROS-generating hydrogels for accelerated tissue regeneration.

Bioact Mater. 2025-7-8

[5]
Nanozymes for Accelerating the Foot Wound Healing: A Review.

Int J Nanomedicine. 2025-7-10

[6]
New Strategies for the Treatment of Diabetic Foot Ulcers Using Nanoenzymes: Frontline Advances in Anti-Infection, Immune Regulation, and Microenvironment Improvement.

Int J Nanomedicine. 2025-7-5

[7]
Platelet Extracellular Vesicles as Natural Delivery Vehicles for Mitochondrial Dysfunction Therapy?

ACS Biomater Sci Eng. 2025-5-12

[8]
Synergistic polyphenol-amino acid nanoparticles: a new strategy for reactive oxygen species management.

RSC Adv. 2025-2-19

[9]
Smart self-healing hydrogel wound dressings for diabetic wound treatment.

Nanomedicine (Lond). 2025-4

[10]
Probiotic active gel promotes diabetic wound healing through continuous local glucose consumption and antioxidant.

J Nanobiotechnology. 2025-1-30

本文引用的文献

[1]
analysis and tests of the tuna dark muscle hydrolysate anti-oxidation effect.

RSC Adv. 2018-4-17

[2]
Perspective on the application of medicinal plants and natural products in wound healing: A mechanistic review.

Pharmacol Res. 2021-12

[3]
Antioxidant Therapy and Antioxidant-Related Bionanomaterials in Diabetic Wound Healing.

Front Bioeng Biotechnol. 2021-6-24

[4]
Dopamine-Substituted Multidomain Peptide Hydrogel with Inherent Antimicrobial Activity and Antioxidant Capability for Infected Wound Healing.

ACS Appl Mater Interfaces. 2021-6-30

[5]
A Smart Nanoplatform with Photothermal Antibacterial Capability and Antioxidant Activity for Chronic Wound Healing.

Adv Healthc Mater. 2021-7

[6]
Rational selection of bioactive principles for wound healing applications: Growth factors and antioxidants.

Int Wound J. 2022-1

[7]
A cut above the rest: oxidative stress in chronic wounds and the potential role of polyphenols as therapeutics.

J Pharm Pharmacol. 2022-4-20

[8]
Oxidative Stress and Tissue Repair: Mechanism, Biomarkers, and Therapeutics.

Oxid Med Cell Longev. 2021-2-27

[9]
Beneficial Effect of Tempol, a Membrane-Permeable Radical Scavenger, on Inflammation and Osteoarthritis in In Vitro Models.

Biomolecules. 2021-2-25

[10]
Tempol ameliorates polycystic ovary syndrome through attenuating intestinal oxidative stress and modulating of gut microbiota composition-serum metabolites interaction.

Redox Biol. 2021-5

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索