Suppr超能文献

一种使用咳嗽音频的无偏差人工智能呼吸系统疾病诊断模型。

An AI-Enabled Bias-Free Respiratory Disease Diagnosis Model Using Cough Audio.

作者信息

Saeed Tabish, Ijaz Aneeqa, Sadiq Ismail, Qureshi Haneya Naeem, Rizwan Ali, Imran Ali

机构信息

AI4Networks Research Center, Department of Electrical & Computer Engineering, University of Oklahoma, Tulsa, OK 74135, USA.

James Watt School of Engineering, University of Glasgow, Glasgow G12 8QQ, UK.

出版信息

Bioengineering (Basel). 2024 Jan 5;11(1):55. doi: 10.3390/bioengineering11010055.

Abstract

Cough-based diagnosis for respiratory diseases (RDs) using artificial intelligence (AI) has attracted considerable attention, yet many existing studies overlook confounding variables in their predictive models. These variables can distort the relationship between cough recordings (input data) and RD status (output variable), leading to biased associations and unrealistic model performance. To address this gap, we propose the Bias-Free Network (RBF-Net), an end-to-end solution that effectively mitigates the impact of confounders in the training data distribution. RBF-Net ensures accurate and unbiased RD diagnosis features, emphasizing its relevance by incorporating a COVID-19 dataset in this study. This approach aims to enhance the reliability of AI-based RD diagnosis models by navigating the challenges posed by confounding variables. A hybrid of a Convolutional Neural Networks (CNN) and Long Short-Term Memory (LSTM) networks is proposed for the feature encoder module of RBF-Net. An additional bias predictor is incorporated in the classification scheme to formulate a conditional Generative Adversarial Network (c-GAN) that helps in decorrelating the impact of confounding variables from RD prediction. The merit of RBF-Net is demonstrated by comparing classification performance with a State-of-The-Art (SoTA) Deep Learning (DL) model (CNN-LSTM) after training on different unbalanced COVID-19 data sets, created by using a large-scale proprietary cough data set. RBF-Net proved its robustness against extremely biased training scenarios by achieving test set accuracies of 84.1%, 84.6%, and 80.5% for the following confounding variables-gender, age, and smoking status, respectively. RBF-Net outperforms the CNN-LSTM model test set accuracies by 5.5%, 7.7%, and 8.2%, respectively.

摘要

利用人工智能(AI)基于咳嗽进行呼吸系统疾病(RDs)诊断已引起广泛关注,但许多现有研究在其预测模型中忽略了混杂变量。这些变量会扭曲咳嗽记录(输入数据)与RD状态(输出变量)之间的关系,导致有偏差的关联和不切实际的模型性能。为了弥补这一差距,我们提出了无偏差网络(RBF-Net),这是一种端到端的解决方案,可有效减轻混杂因素对训练数据分布的影响。RBF-Net确保了准确且无偏差的RD诊断特征,并通过在本研究中纳入COVID-19数据集来强调其相关性。这种方法旨在通过应对混杂变量带来的挑战来提高基于AI的RD诊断模型的可靠性。RBF-Net的特征编码器模块采用了卷积神经网络(CNN)和长短期记忆(LSTM)网络的混合结构。在分类方案中加入了一个额外的偏差预测器,以构建一个条件生成对抗网络(c-GAN),有助于消除混杂变量对RD预测的影响。通过在使用大规模专有咳嗽数据集创建的不同不平衡COVID-19数据集上进行训练后,将分类性能与最先进的(SoTA)深度学习(DL)模型(CNN-LSTM)进行比较,证明了RBF-Net的优点。对于以下混杂变量——性别、年龄和吸烟状况,RBF-Net在测试集上分别达到了84.1%、84.6%和80.5%的准确率,证明了其在极端有偏差的训练场景下的鲁棒性。RBF-Net在测试集上的准确率分别比CNN-LSTM模型高出5.5%、7.7%和8.2%。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e991/10813025/300ba3b6d1b4/bioengineering-11-00055-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验