Sarra Raniya R, Dinar Ahmed M, Mohammed Mazin Abed, Ghani Mohd Khanapi Abd, Albahar Marwan Ali
Computer Engineering Department, University of Technology, Baghdad 00964, Iraq.
College of Computer Science and Information Technology, University of Anbar, Ramadi 31001, Iraq.
Diagnostics (Basel). 2022 Nov 22;12(12):2899. doi: 10.3390/diagnostics12122899.
Biomarkers including fasting blood sugar, heart rate, electrocardiogram (ECG), blood pressure, etc. are essential in the heart disease (HD) diagnosing. Using wearable sensors, these measures are collected and applied as inputs to a deep learning (DL) model for HD diagnosis. However, it is observed that model accuracy weakens when the data gathered are scarce or imbalanced. Therefore, this work proposes two DL-based frameworks, GAN-1D-CNN, and GAN-Bi-LSTM. These frameworks contain: (1) a generative adversarial network (GAN) and (2) a one-dimensional convolutional neural network (1D-CNN) or bi-directional long short-term memory (Bi-LSTM). The GAN model is utilized to augment the small and imbalanced dataset, which is the Cleveland dataset. The 1D-CNN and Bi-LSTM models are then trained using the enlarged dataset to diagnose HD. Unlike previous works, the proposed frameworks increase the dataset first to avoid the prediction bias caused by the limited data. The GAN-1D-CNN achieved 99.1% accuracy, specificity, sensitivity, F1-score, and 100% area under the curve (AUC). Similarly, the GAN-Bi-LSTM obtained 99.3% accuracy, 99.2% specificity, 99.3% sensitivity, 99.2% F1-score, and 100% AUC. Furthermore, time complexity of proposed frameworks is investigated with and without principal component analysis (PCA). The PCA method reduced prediction times for 61 samples using GAN-1D-CNN and GAN-Bi-LSTM to 68.8 and 74.8 ms, respectively. These results show that it is reliable to use our frameworks for augmenting limited data and predicting heart disease.
包括空腹血糖、心率、心电图(ECG)、血压等在内的生物标志物在心脏病(HD)诊断中至关重要。利用可穿戴传感器收集这些测量数据,并将其作为输入应用于用于HD诊断的深度学习(DL)模型。然而,据观察,当收集到的数据稀缺或不均衡时,模型准确性会下降。因此,这项工作提出了两个基于DL的框架,即GAN-1D-CNN和GAN-Bi-LSTM。这些框架包含:(1)一个生成对抗网络(GAN)和(2)一个一维卷积神经网络(1D-CNN)或双向长短期记忆网络(Bi-LSTM)。GAN模型用于扩充小型且不均衡的数据集,即克利夫兰数据集。然后使用扩充后的数据集训练1D-CNN和Bi-LSTM模型以诊断HD。与先前的工作不同,所提出的框架首先扩充数据集以避免有限数据导致的预测偏差。GAN-1D-CNN的准确率、特异性、灵敏度、F1分数达到99.1%,曲线下面积(AUC)为100%。同样,GAN-Bi-LSTM的准确率为99.3%,特异性为99.2%,灵敏度为99.3%,F1分数为99.2%,AUC为100%。此外,还研究了所提出框架在有无主成分分析(PCA)情况下的时间复杂度。PCA方法将使用GAN-1D-CNN和GAN-Bi-LSTM对61个样本的预测时间分别减少到68.8毫秒和74.8毫秒。这些结果表明,使用我们的框架扩充有限数据并预测心脏病是可靠的。