Ma Wen, Lau Yu-Lung, Yang Wanling, Wang Yong-Fei
Department of Paediatrics and Adolescent Medicine, The University of Hong Kong, Hong Kong, China.
Shenzhen Futian Hospital for Rheumatic Diseases, Shenzhen, China.
Front Genet. 2022 Aug 15;13:902793. doi: 10.3389/fgene.2022.902793. eCollection 2022.
Patients with systemic lupus erythematosus (SLE) present varied clinical manifestations, posing a diagnostic challenge for physicians. Genetic factors substantially contribute to SLE development. A polygenic risk scoring (PRS) model has been used to estimate the genetic risk of SLE in individuals. However, this approach assumes independent and additive contribution of genetic variants to disease development. We aimed to improve the accuracy of SLE prediction using machine-learning algorithms. We applied random forest (RF), support vector machine (SVM), and artificial neural network (ANN) to classify SLE cases and controls using the data from our previous genome-wide association studies (GWAS) conducted in either Chinese or European populations, including a total of 19,208 participants. The overall performances of these predictors were assessed by the value of area under the receiver-operator curve (AUC). The analyses in the Chinese GWAS showed that the RF model significantly outperformed other predictors, achieving a mean AUC value of 0.84, a 13% improvement upon the PRS model (AUC = 0.74). At the optimal cut-off, the RF predictor reached a sensitivity of 84% with a specificity of 68% in SLE classification. To validate these results, similar analyses were repeated in the European GWAS, and the RF model consistently outperformed other algorithms. Our study suggests that the RF model could be an additional and powerful predictor for SLE early diagnosis.
系统性红斑狼疮(SLE)患者临床表现多样,给医生的诊断带来挑战。遗传因素在SLE发病中起重要作用。多基因风险评分(PRS)模型已被用于评估个体患SLE的遗传风险。然而,这种方法假定基因变异对疾病发生的贡献是独立且累加的。我们旨在使用机器学习算法提高SLE预测的准确性。我们应用随机森林(RF)、支持向量机(SVM)和人工神经网络(ANN),利用我们之前在中国或欧洲人群中进行的全基因组关联研究(GWAS)数据(共19208名参与者)对SLE病例和对照进行分类。通过受试者工作特征曲线下面积(AUC)值评估这些预测模型的整体性能。中国GWAS分析表明,RF模型显著优于其他预测模型,平均AUC值为0.84,比PRS模型(AUC = 0.74)提高了13%。在最佳临界值时,RF预测模型在SLE分类中灵敏度达到84%,特异度为68%。为验证这些结果,在欧洲GWAS中重复了类似分析,RF模型始终优于其他算法。我们的研究表明,RF模型可能是SLE早期诊断的一种额外且强大的预测工具。