Suppr超能文献

随机森林算法在双相情感障碍精确分类中的应用。

Application of the Random Forest Algorithm for Accurate Bipolar Disorder Classification.

作者信息

Suárez Miguel, Torres Ana M, Blasco-Segura Pilar, Mateo Jorge

机构信息

Virgen de la Luz Hospital, 16002 Cuenca, Spain.

Medical Analysis Expert Group, Institute of Technology, University of Castilla-La Mancha, 13001 Cuenca, Spain.

出版信息

Life (Basel). 2025 Mar 3;15(3):394. doi: 10.3390/life15030394.

Abstract

Bipolar disorder (BD) is a complex psychiatric condition characterized by alternating episodes of mania and depression, posing significant challenges for accurate and timely diagnosis. This study explores the use of the Random Forest (RF) algorithm as a machine learning approach to classify patients with BD and healthy controls based on electroencephalogram (EEG) data. A total of 330 participants, including euthymic BD patients and healthy controls, were analyzed. EEG recordings were processed to extract key features, including power in frequency bands and complexity metrics such as the Hurst Exponent, which measures the persistence or randomness of a time series, and the Higuchi's Fractal Dimension, which is used to quantify the irregularity of brain signals. The RF model demonstrated robust performance, achieving an average accuracy of 93.41%, with recall and specificity exceeding 93%. These results highlight the algorithm's capacity to handle complex, noisy datasets while identifying key features relevant for classification. Importantly, the model provided interpretable insights into the physiological markers associated with BD, reinforcing the clinical value of EEG as a diagnostic tool. The findings suggest that RF is a reliable and accessible method for supporting the diagnosis of BD, complementing traditional clinical practices. Its ability to reduce diagnostic delays, improve classification accuracy, and optimize resource allocation make it a promising tool for integrating artificial intelligence into psychiatric care. This study represents a significant step toward precision psychiatry, leveraging technology to improve the understanding and management of complex mental health disorders.

摘要

双相情感障碍(BD)是一种复杂的精神疾病,其特征为躁狂和抑郁交替发作,这给准确及时的诊断带来了重大挑战。本研究探讨了使用随机森林(RF)算法作为一种机器学习方法,基于脑电图(EEG)数据对双相情感障碍患者和健康对照进行分类。总共分析了330名参与者,包括处于心境正常期的双相情感障碍患者和健康对照。对脑电图记录进行处理以提取关键特征,包括频段功率以及复杂性指标,如用于测量时间序列持续性或随机性的赫斯特指数,以及用于量化脑信号不规则性的 Higuchi 分形维数。随机森林模型表现出强大的性能,平均准确率达到93.41%,召回率和特异性超过93%。这些结果突出了该算法处理复杂、有噪声数据集的能力,同时识别与分类相关的关键特征。重要的是,该模型为与双相情感障碍相关的生理标志物提供了可解释的见解,强化了脑电图作为诊断工具的临床价值。研究结果表明,随机森林是一种支持双相情感障碍诊断的可靠且易于使用的方法,可补充传统临床实践。它减少诊断延迟、提高分类准确率和优化资源分配的能力使其成为将人工智能整合到精神科护理中的一个有前途的工具。这项研究朝着精准精神病学迈出了重要一步,利用技术来增进对复杂心理健康障碍的理解和管理。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/91c9/11943861/7c82a2d53aa9/life-15-00394-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验