Bortolato Elena, Ventura Laura
Department of Statistical Sciences, University of Padova, 35121 Padova, Italy.
Entropy (Basel). 2024 Jan 9;26(1):58. doi: 10.3390/e26010058.
This paper aims to contribute to refining the -values for testing precise hypotheses, especially when dealing with nuisance parameters, leveraging the effectiveness of asymptotic expansions of the posterior. The proposed approach offers the advantage of bypassing the need for elicitation of priors and reference functions for the nuisance parameters and the multidimensional integration step. For this purpose, starting from a Laplace approximation, a posterior distribution for the parameter of interest is only considered and then a suitable objective matching prior is introduced, ensuring that the posterior mode aligns with an equivariant frequentist estimator. Consequently, both Highest Probability Density credible sets and the -value remain invariant. Some targeted and challenging examples are discussed.
本文旨在通过利用后验的渐近展开的有效性,为精确假设检验的p值细化做出贡献,特别是在处理干扰参数时。所提出的方法具有无需为干扰参数引出先验和参考函数以及多维积分步骤的优点。为此,从拉普拉斯近似开始,仅考虑感兴趣参数的后验分布,然后引入合适的目标匹配先验,确保后验模式与等变频率估计器对齐。因此,最高概率密度可信集和p值都保持不变。讨论了一些有针对性且具有挑战性的例子。