Diniz Marcio A, B Pereira Carlos A, Stern Julio M
Departamento de Estatística, Universidade Federal de S. Carlos, Rod. Washington Luis, km 235, S. Carlos 13565-905, Brazil.
Contabilidade e Atuária, Universidade de S. Paulo, São Paulo 01000, Brazil.
Entropy (Basel). 2020 Aug 31;22(9):968. doi: 10.3390/e22090968.
To perform statistical inference for time series, one should be able to assess if they present deterministic or stochastic trends. For univariate analysis, one way to detect stochastic trends is to test if the series has unit roots, and for multivariate studies it is often relevant to search for stationary linear relationships between the series, or if they cointegrate. The main goal of this article is to briefly review the shortcomings of unit root and cointegration tests proposed by the Bayesian approach of statistical inference and to show how they can be overcome by the Full Bayesian Significance Test (FBST), a procedure designed to test sharp or precise hypothesis. We will compare its performance with the most used frequentist alternatives, namely, the Augmented Dickey-Fuller for unit roots and the maximum eigenvalue test for cointegration.
为了对时间序列进行统计推断,人们应该能够评估它们是否呈现确定性或随机性趋势。对于单变量分析,检测随机趋势的一种方法是检验该序列是否有单位根,而对于多变量研究,寻找序列之间的平稳线性关系或者它们是否协整通常是有意义的。本文的主要目的是简要回顾贝叶斯统计推断方法提出的单位根和协整检验的缺点,并展示如何通过全贝叶斯显著性检验(FBST)来克服这些缺点,FBST是一种用于检验精确或确切假设的程序。我们将把它的性能与最常用的频率学派替代方法进行比较,即用于单位根检验的增广迪基 - 富勒检验和用于协整检验的最大特征值检验。