Suppr超能文献

基于图态的量子安全多方求和

Quantum Secure Multi-Party Summation with Graph State.

作者信息

Lu Yaohua, Ding Gangyi

机构信息

School of Computer Science and Technology, Beijing Institute of Technology, Beijing 100081, China.

出版信息

Entropy (Basel). 2024 Jan 17;26(1):80. doi: 10.3390/e26010080.

Abstract

Quantum secure multi-party summation (QSMS) is a fundamental problem in quantum secure multi-party computation (QSMC), wherein multiple parties compute the sum of their data without revealing them. This paper proposes a novel QSMS protocol based on graph state, which offers enhanced security, usability, and flexibility compared to existing methods. The protocol leverages the structural advantages of graph state and employs random graph state structures and random encryption gate operations to provide stronger security. Additionally, the stabilizer of the graph state is utilized to detect eavesdroppers and channel noise without the need for decoy bits. The protocol allows for the arbitrary addition and deletion of participants, enabling greater flexibility. Experimental verification is conducted to demonstrate the security, effectiveness, and practicality of the proposed protocols. The correctness and security of the protocols are formally proven. The QSMS method based on graph state introduces new opportunities for QSMC. It highlights the potential of leveraging quantum graph state technology to securely and efficiently solve various multi-party computation problems.

摘要

量子安全多方求和(QSMS)是量子安全多方计算(QSMC)中的一个基本问题,其中多个参与方在不泄露其数据的情况下计算它们数据的总和。本文提出了一种基于图态的新型QSMS协议,与现有方法相比,该协议具有更高的安全性、可用性和灵活性。该协议利用图态的结构优势,采用随机图态结构和随机加密门操作来提供更强的安全性。此外,利用图态的稳定子来检测窃听者和信道噪声,而无需使用诱饵比特。该协议允许任意添加和删除参与者,具有更大的灵活性。进行了实验验证,以证明所提出协议的安全性、有效性和实用性。正式证明了协议的正确性和安全性。基于图态的QSMS方法为QSMC带来了新的机遇。它突出了利用量子图态技术安全、高效地解决各种多方计算问题的潜力。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9d0f/10814682/3f747ac01e08/entropy-26-00080-g001.jpg

相似文献

1
Quantum Secure Multi-Party Summation with Graph State.
Entropy (Basel). 2024 Jan 17;26(1):80. doi: 10.3390/e26010080.
2
Quantum Secure Multi-Party Summation Using Single Photons.
Entropy (Basel). 2023 Mar 30;25(4):590. doi: 10.3390/e25040590.
3
Multi-Party Quantum Summation Based on Quantum Teleportation.
Entropy (Basel). 2019 Jul 23;21(7):719. doi: 10.3390/e21070719.
4
An efficient simulation for quantum secure multiparty computation.
Sci Rep. 2021 Jan 26;11(1):2206. doi: 10.1038/s41598-021-81799-z.
5
Unconditionally secure relativistic multi-party biased coin flipping and die rolling.
Proc Math Phys Eng Sci. 2021 Aug;477(2252):20210203. doi: 10.1098/rspa.2021.0203.
6
Measurement-Device-Independent Two-Party Cryptography with Error Estimation.
Sensors (Basel). 2020 Nov 7;20(21):6351. doi: 10.3390/s20216351.
7
Randomized Oblivious Transfer for Secure Multiparty Computation in the Quantum Setting.
Entropy (Basel). 2021 Jul 31;23(8):1001. doi: 10.3390/e23081001.
8
Secure Multiparty Quantum Computation for Summation and Multiplication.
Sci Rep. 2016 Jan 21;6:19655. doi: 10.1038/srep19655.
9
Multi-Party Quantum Private Comparison Based on Bell States.
Entropy (Basel). 2023 Aug 2;25(8):1156. doi: 10.3390/e25081156.
10
A secure multi-party computation protocol without CRS supporting multi-bit encryption.
PLoS One. 2022 Mar 18;17(3):e0265572. doi: 10.1371/journal.pone.0265572. eCollection 2022.

本文引用的文献

1
Experimental Quantum Communication Overcomes the Rate-Loss Limit without Global Phase Tracking.
Phys Rev Lett. 2023 Jun 23;130(25):250801. doi: 10.1103/PhysRevLett.130.250801.
2
Demonstration of quantum-digital payments.
Nat Commun. 2023 Jun 29;14(1):3849. doi: 10.1038/s41467-023-39519-w.
3
Experimental quantum secure network with digital signatures and encryption.
Natl Sci Rev. 2022 Oct 22;10(4):nwac228. doi: 10.1093/nsr/nwac228. eCollection 2023 Apr.
4
Simple security proof of coherent-one-way quantum key distribution.
Opt Express. 2022 Jun 20;30(13):23783-23795. doi: 10.1364/OE.461669.
5
Mode-pairing quantum key distribution.
Nat Commun. 2022 Jul 7;13(1):3903. doi: 10.1038/s41467-022-31534-7.
6
Expand-and-Randomize: An Algebraic Approach to Secure Computation.
Entropy (Basel). 2021 Nov 4;23(11):1461. doi: 10.3390/e23111461.
7
Experimental quantum conference key agreement.
Sci Adv. 2021 Jun 4;7(23). doi: 10.1126/sciadv.abe0395. Print 2021 Jun.
8
Overcoming the rate-distance limit of quantum key distribution without quantum repeaters.
Nature. 2018 May;557(7705):400-403. doi: 10.1038/s41586-018-0066-6. Epub 2018 May 2.
9
Secure Multiparty Quantum Computation for Summation and Multiplication.
Sci Rep. 2016 Jan 21;6:19655. doi: 10.1038/srep19655.
10
A one-way quantum computer.
Phys Rev Lett. 2001 May 28;86(22):5188-91. doi: 10.1103/PhysRevLett.86.5188.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验