Suppr超能文献

基于深度神经网络的CEST和AREX处理:在3T磁共振成像阿尔茨海默病模型中的应用

Deep neural network based CEST and AREX processing: Application in imaging a model of Alzheimer's disease at 3 T.

作者信息

Huang Jianpan, Lai Joseph H C, Tse Kai-Hei, Cheng Gerald W Y, Liu Yang, Chen Zilin, Han Xiongqi, Chen Lin, Xu Jiadi, Chan Kannie W Y

机构信息

Department of Biomedical Engineering, City University of Hong Kong, Hong Kong, China.

Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Hong Kong, China.

出版信息

Magn Reson Med. 2022 Mar;87(3):1529-1545. doi: 10.1002/mrm.29044. Epub 2021 Oct 17.

Abstract

PURPOSE

To optimize and apply deep neural network based CEST (deepCEST) and apparent exchange dependent-relaxation (deepAREX) for imaging the mouse brain with Alzheimer's disease (AD) at 3T MRI.

METHODS

CEST and T data of central and anterior brain slices of 10 AD mice and 10 age-matched wild type (WT) mice were acquired at a 3T animal MRI scanner. The networks of deepCEST/deepAREX were optimized and trained on the WT data. The CEST/AREX contrasts of AD and WT mice predicted by the networks were analyzed and further validated by immunohistochemistry.

RESULTS

After optimization and training on CEST data of WT mice, deepCEST/deepAREX could rapidly (~1 s) generate precise CEST and AREX results for unseen CEST data of AD mice, indicating the accuracy and generalization of the networks. Significant lower amide weighted (3.5 ppm) signal related to amyloid β-peptide (Aβ) plaque depositions, which was validated by immunohistochemistry results, was detected in both central and anterior brain slices of AD mice compared to WT mice. Decreased magnetization transfer (MT) signal was also found in AD mice especially in the anterior slice.

CONCLUSION

DeepCEST/deepAREX could rapidly generate accurate CEST/AREX contrasts in animal study. The well-optimized deepCEST/deepAREX have potential for AD differentiation at 3T MRI.

摘要

目的

优化并应用基于深度神经网络的化学交换饱和转移成像(deepCEST)和表观交换依赖弛豫成像(deepAREX),在3T磁共振成像(MRI)下对患有阿尔茨海默病(AD)的小鼠大脑进行成像。

方法

在一台3T动物MRI扫描仪上采集10只AD小鼠和10只年龄匹配的野生型(WT)小鼠大脑中部和前部切片的CEST和T数据。利用WT数据对deepCEST/deepAREX网络进行优化和训练。分析网络预测的AD和WT小鼠的CEST/AREX对比,并通过免疫组织化学进一步验证。

结果

在对WT小鼠的CEST数据进行优化和训练后,deepCEST/deepAREX能够快速(约1秒)为AD小鼠未见过的CEST数据生成精确的CEST和AREX结果,表明网络的准确性和泛化能力。与WT小鼠相比,在AD小鼠大脑中部和前部切片中均检测到与淀粉样β肽(Aβ)斑块沉积相关的酰胺加权(3.5 ppm)信号显著降低,这一结果通过免疫组织化学得到验证。在AD小鼠中还发现了磁化传递(MT)信号降低,尤其是在前部切片中。

结论

在动物研究中,DeepCEST/deepAREX能够快速生成准确的CEST/AREX对比。经过良好优化的deepCEST/deepAREX在3T MRI下具有区分AD的潜力。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验