Pradeepkumar Aiswarya, Cortie David, Smyth Erin, Le Brun Anton P, Iacopi Francesca
School of Electrical and Data Engineering, Faculty of Engineering and Information Technology, University of Technology Sydney Sydney New South Wales 2007 Australia
ARC Centre of Excellence for Transformative Meta-Optical Systems, University of Technology Sydney New South Wales 2007 Australia.
RSC Adv. 2024 Jan 19;14(5):3232-3240. doi: 10.1039/d3ra08289j. eCollection 2024 Jan 17.
The growth of graphene on silicon carbide on silicon offers a very attractive route towards novel wafer-scale photonic and electronic devices that are easy to fabricate and can be integrated in silicon manufacturing. Using a Ni/Cu catalyst for the epitaxial growth of graphene has been successful in the mitigation of the very defective nature of the underlying silicon carbide on silicon, leading to a consistent graphene coverage over large scales. A more detailed understanding of this growth mechanism is warranted in order to further optimise the catalyst composition, preferably the use of characterization measurements. Here, we report neutron reflectometry measurements of (Ni, Cu)/SiC films on silicon wafers, annealed from room temperature to 1100 °C, which initiates graphene formation at the buried (Ni, Cu)/SiC interface. Detailed modelling of the high temperature neutron reflectometry and corresponding scattering length density profiles yield insights into the distinct physical mechanisms within the different temperature regimes. The initially smooth solid metallic layers undergo intermixing and roughening transitions at relatively low temperatures below 500 °C, and then metal silicides begin to form above 600 °C from interfacial reactions with the SiC, releasing atomic carbon. At the highest temperature range of 600-1100 °C, the low neutron scattering length density at high temperature is consistent with a silicon-rich, liquid surface phase corresponding to molten nickel silicides and copper. This liquid catalyst layer promotes the liquid-phase epitaxial growth of a graphene layer by precipitating the excess carbon available at the SiC/metal interface.
在硅衬底上的碳化硅上生长石墨烯,为制造新型的易于制造且可集成到硅制造工艺中的晶圆级光子和电子器件提供了一条极具吸引力的途径。使用镍/铜催化剂进行石墨烯的外延生长,成功地改善了硅衬底上碳化硅的严重缺陷特性,从而在大尺度上实现了均匀的石墨烯覆盖。为了进一步优化催化剂成分,最好通过表征测量来更深入地了解这种生长机制。在此,我们报告了对硅片上(镍,铜)/碳化硅薄膜进行的中子反射测量,该薄膜从室温退火至1100°C,在埋入的(镍,铜)/碳化硅界面处引发石墨烯形成。对高温中子反射测量以及相应的散射长度密度分布进行详细建模,有助于深入了解不同温度区间内不同的物理机制。最初光滑的固态金属层在低于500°C的相对低温下经历混合和粗糙化转变,然后在600°C以上,金属硅化物开始通过与碳化硅的界面反应形成,并释放出碳原子。在600 - 1100°C的最高温度范围内,高温下低的中子散射长度密度与对应于熔融镍硅化物和铜的富硅液态表面相一致。这种液态催化剂层通过沉淀碳化硅/金属界面处多余的碳,促进了石墨烯层的液相外延生长。