Jankowski Maciej, Saedi Mehdi, La Porta Francesco, Manikas Anastasios C, Tsakonas Christos, Cingolani Juan S, Andersen Mie, de Voogd Marc, van Baarle Gertjan J C, Reuter Karsten, Galiotis Costas, Renaud Gilles, Konovalov Oleg V, Groot Irene M N
Université Grenoble Alpes, CEA, IRIG/MEM/NRS, 38000 Grenoble, France.
ESRF-The European Synchrotron, 71 Avenue des Martyrs, 38043 Grenoble, France.
ACS Nano. 2021 Jun 22;15(6):9638-9648. doi: 10.1021/acsnano.0c10377. Epub 2021 Jun 1.
The synthesis of large, defect-free two-dimensional materials (2DMs) such as graphene is a major challenge toward industrial applications. Chemical vapor deposition (CVD) on liquid metal catalysts (LMCats) is a recently developed process for the fast synthesis of high-quality single crystals of 2DMs. However, up to now, the lack of techniques enabling direct feedback on the growth has limited our understanding of the process dynamics and primarily led to empirical growth recipes. Thus, an multiscale monitoring of the 2DMs structure, coupled with a real-time control of the growth parameters, is necessary for efficient synthesis. Here we report real-time monitoring of graphene growth on liquid copper (at 1370 K under atmospheric pressure CVD conditions) four complementary methods: synchrotron X-ray diffraction and reflectivity, Raman spectroscopy, and radiation-mode optical microscopy. This has allowed us to control graphene growth parameters such as shape, dispersion, and the hexagonal supra-organization with very high accuracy. Furthermore, the switch from continuous polycrystalline film to the growth of millimeter-sized defect-free single crystals could also be accomplished. The presented results have far-reaching consequences for studying and tailoring 2D material formation processes on LMCats under CVD growth conditions. Finally, the experimental observations are supported by multiscale modeling that has thrown light into the underlying mechanisms of graphene growth.
合成诸如石墨烯这类大型、无缺陷的二维材料(2DMs)是实现工业应用面临的一项重大挑战。在液态金属催化剂(LMCats)上进行化学气相沉积(CVD)是一种最近开发的用于快速合成高质量2DMs单晶的工艺。然而,到目前为止,由于缺乏能够对生长过程进行直接反馈的技术,限制了我们对该过程动力学的理解,并且主要导致了凭经验的生长方法。因此,对2DMs结构进行多尺度监测,并结合对生长参数的实时控制,对于高效合成是必要的。在此,我们报告了在液态铜上(在大气压CVD条件下,温度为1370 K)通过四种互补方法对石墨烯生长进行实时监测:同步加速器X射线衍射和反射率、拉曼光谱以及辐射模式光学显微镜。这使我们能够以非常高的精度控制石墨烯的生长参数,如形状、分散性和六边形超结构。此外,还能够实现从连续多晶膜到毫米尺寸无缺陷单晶生长的转变。所呈现的结果对于研究和定制在CVD生长条件下LMCats上的二维材料形成过程具有深远影响。最后,多尺度建模支持了实验观察结果,该建模揭示了石墨烯生长的潜在机制。