Suppr超能文献

对酒精使用障碍领域6年电子健康数据的评估表明护理效果有所改善。

Evaluation of 6 years of eHealth data in the alcohol use disorder field indicates improved efficacy of care.

作者信息

Wallden Mats, Dahlberg Gunnar, Månflod Johan, Knez Rajna, Winkvist Maria, Zetterström Andreas, Andersson Karl, Hämäläinen Markku D, Nyberg Fred

机构信息

Skillsta Teknik Design och Kvalitet AB, Vänge, Sweden.

Kontigo Care AB, Uppsala, Sweden.

出版信息

Front Digit Health. 2024 Jan 5;5:1282022. doi: 10.3389/fdgth.2023.1282022. eCollection 2023.

Abstract

BACKGROUND

Predictive eHealth tools will change the field of medicine, however long-term data is scarce. Here, we report findings on data collected over 6 years with an AI-based eHealth system for supporting the treatment of alcohol use disorder.

METHODS

Since the deployment of Previct Alcohol, structured data has been archived in a data warehouse, currently comprising 505,641 patient days. The frequencies of relapse and caregiver-patient messaging over time was studied. The effects of both introducing an AI-driven relapse prediction tool and the COVID-19 pandemic were analyzed.

RESULTS

The relapse frequency per patient day among Previct Alcohol users was 0.28 in 2016, 0.22 in 2020 and 0.25 in 2022 with no drastic change during COVID-19. When a relapse was predicted, the actual occurrence of relapse in the days immediately after was found to be above average. Additionally, there was a noticeable increase in caregiver interactions following these predictions. When caregivers were not informed of these predictions, the risk of relapse was found to be higher compared to when the prediction tool was actively being used. The prediction tool decreased the relapse risk by 9% for relapses that were of short duration and by 18% for relapses that lasted more than 3 days.

CONCLUSIONS

The eHealth system Previct Alcohol allows for high resolution measurements, enabling precise identifications of relapse patterns and follow up on individual and population-based alcohol use disorder treatment. eHealth relapse prediction aids the caregiver to act timely, which reduces, delays, and shortens relapses.

摘要

背景

预测性数字健康工具将改变医学领域,但长期数据稀缺。在此,我们报告了基于人工智能的数字健康系统在6年多时间里收集的数据,该系统用于支持酒精使用障碍的治疗。

方法

自Previct Alcohol系统部署以来,结构化数据已存档于数据仓库,目前包含505,641个患者日。研究了随着时间推移复发和护理人员与患者信息交流的频率。分析了引入人工智能驱动的复发预测工具和新冠疫情的影响。

结果

2016年Previct Alcohol用户中每日每位患者的复发频率为0.28,2020年为0.22,2022年为0.25,在新冠疫情期间没有急剧变化。当预测到复发时,发现随后几天实际复发的发生率高于平均水平。此外,在这些预测之后,护理人员的互动显著增加。当护理人员未被告知这些预测时,与积极使用预测工具时相比,发现复发风险更高。对于短期复发,预测工具将复发风险降低了9%,对于持续超过3天的复发,降低了18%。

结论

数字健康系统Previct Alcohol允许进行高分辨率测量,能够精确识别复发模式,并对基于个体和人群的酒精使用障碍治疗进行随访。数字健康复发预测有助于护理人员及时采取行动,从而减少、延迟和缩短复发时间。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4c94/10796677/ec2d21550ba3/fdgth-05-1282022-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验